Metamath Proof Explorer


Theorem fzonn0p1

Description: A nonnegative integer is element of the half-open range of nonnegative integers with the element increased by one as an upper bound. (Contributed by Alexander van der Vekens, 5-Aug-2018)

Ref Expression
Assertion fzonn0p1
|- ( N e. NN0 -> N e. ( 0 ..^ ( N + 1 ) ) )

Proof

Step Hyp Ref Expression
1 id
 |-  ( N e. NN0 -> N e. NN0 )
2 nn0p1nn
 |-  ( N e. NN0 -> ( N + 1 ) e. NN )
3 nn0re
 |-  ( N e. NN0 -> N e. RR )
4 3 ltp1d
 |-  ( N e. NN0 -> N < ( N + 1 ) )
5 elfzo0
 |-  ( N e. ( 0 ..^ ( N + 1 ) ) <-> ( N e. NN0 /\ ( N + 1 ) e. NN /\ N < ( N + 1 ) ) )
6 1 2 4 5 syl3anbrc
 |-  ( N e. NN0 -> N e. ( 0 ..^ ( N + 1 ) ) )