Step |
Hyp |
Ref |
Expression |
1 |
|
elfzo0 |
|- ( I e. ( 0 ..^ N ) <-> ( I e. NN0 /\ N e. NN /\ I < N ) ) |
2 |
|
peano2nn0 |
|- ( I e. NN0 -> ( I + 1 ) e. NN0 ) |
3 |
2
|
3ad2ant1 |
|- ( ( I e. NN0 /\ N e. NN /\ I < N ) -> ( I + 1 ) e. NN0 ) |
4 |
|
peano2nn |
|- ( N e. NN -> ( N + 1 ) e. NN ) |
5 |
4
|
3ad2ant2 |
|- ( ( I e. NN0 /\ N e. NN /\ I < N ) -> ( N + 1 ) e. NN ) |
6 |
|
simp3 |
|- ( ( I e. NN0 /\ N e. NN /\ I < N ) -> I < N ) |
7 |
|
nn0re |
|- ( I e. NN0 -> I e. RR ) |
8 |
|
nnre |
|- ( N e. NN -> N e. RR ) |
9 |
|
1red |
|- ( I < N -> 1 e. RR ) |
10 |
|
ltadd1 |
|- ( ( I e. RR /\ N e. RR /\ 1 e. RR ) -> ( I < N <-> ( I + 1 ) < ( N + 1 ) ) ) |
11 |
7 8 9 10
|
syl3an |
|- ( ( I e. NN0 /\ N e. NN /\ I < N ) -> ( I < N <-> ( I + 1 ) < ( N + 1 ) ) ) |
12 |
6 11
|
mpbid |
|- ( ( I e. NN0 /\ N e. NN /\ I < N ) -> ( I + 1 ) < ( N + 1 ) ) |
13 |
|
elfzo0 |
|- ( ( I + 1 ) e. ( 0 ..^ ( N + 1 ) ) <-> ( ( I + 1 ) e. NN0 /\ ( N + 1 ) e. NN /\ ( I + 1 ) < ( N + 1 ) ) ) |
14 |
3 5 12 13
|
syl3anbrc |
|- ( ( I e. NN0 /\ N e. NN /\ I < N ) -> ( I + 1 ) e. ( 0 ..^ ( N + 1 ) ) ) |
15 |
1 14
|
sylbi |
|- ( I e. ( 0 ..^ N ) -> ( I + 1 ) e. ( 0 ..^ ( N + 1 ) ) ) |