Step |
Hyp |
Ref |
Expression |
1 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` K ) -> K e. ZZ ) |
2 |
|
peano2zm |
|- ( K e. ZZ -> ( K - 1 ) e. ZZ ) |
3 |
1 2
|
syl |
|- ( N e. ( ZZ>= ` K ) -> ( K - 1 ) e. ZZ ) |
4 |
|
1zzd |
|- ( N e. ( ZZ>= ` K ) -> 1 e. ZZ ) |
5 |
|
id |
|- ( N e. ( ZZ>= ` K ) -> N e. ( ZZ>= ` K ) ) |
6 |
1
|
zcnd |
|- ( N e. ( ZZ>= ` K ) -> K e. CC ) |
7 |
|
ax-1cn |
|- 1 e. CC |
8 |
|
npcan |
|- ( ( K e. CC /\ 1 e. CC ) -> ( ( K - 1 ) + 1 ) = K ) |
9 |
6 7 8
|
sylancl |
|- ( N e. ( ZZ>= ` K ) -> ( ( K - 1 ) + 1 ) = K ) |
10 |
9
|
fveq2d |
|- ( N e. ( ZZ>= ` K ) -> ( ZZ>= ` ( ( K - 1 ) + 1 ) ) = ( ZZ>= ` K ) ) |
11 |
5 10
|
eleqtrrd |
|- ( N e. ( ZZ>= ` K ) -> N e. ( ZZ>= ` ( ( K - 1 ) + 1 ) ) ) |
12 |
|
eluzsub |
|- ( ( ( K - 1 ) e. ZZ /\ 1 e. ZZ /\ N e. ( ZZ>= ` ( ( K - 1 ) + 1 ) ) ) -> ( N - 1 ) e. ( ZZ>= ` ( K - 1 ) ) ) |
13 |
3 4 11 12
|
syl3anc |
|- ( N e. ( ZZ>= ` K ) -> ( N - 1 ) e. ( ZZ>= ` ( K - 1 ) ) ) |
14 |
|
fzss2 |
|- ( ( N - 1 ) e. ( ZZ>= ` ( K - 1 ) ) -> ( M ... ( K - 1 ) ) C_ ( M ... ( N - 1 ) ) ) |
15 |
13 14
|
syl |
|- ( N e. ( ZZ>= ` K ) -> ( M ... ( K - 1 ) ) C_ ( M ... ( N - 1 ) ) ) |
16 |
|
fzoval |
|- ( K e. ZZ -> ( M ..^ K ) = ( M ... ( K - 1 ) ) ) |
17 |
1 16
|
syl |
|- ( N e. ( ZZ>= ` K ) -> ( M ..^ K ) = ( M ... ( K - 1 ) ) ) |
18 |
|
eluzelz |
|- ( N e. ( ZZ>= ` K ) -> N e. ZZ ) |
19 |
|
fzoval |
|- ( N e. ZZ -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
20 |
18 19
|
syl |
|- ( N e. ( ZZ>= ` K ) -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
21 |
15 17 20
|
3sstr4d |
|- ( N e. ( ZZ>= ` K ) -> ( M ..^ K ) C_ ( M ..^ N ) ) |