Metamath Proof Explorer


Theorem fzossnn0

Description: A half-open integer range starting at a nonnegative integer is a subset of the nonnegative integers. (Contributed by Alexander van der Vekens, 13-May-2018)

Ref Expression
Assertion fzossnn0
|- ( M e. NN0 -> ( M ..^ N ) C_ NN0 )

Proof

Step Hyp Ref Expression
1 fzossfz
 |-  ( M ..^ N ) C_ ( M ... N )
2 fzss1
 |-  ( M e. ( ZZ>= ` 0 ) -> ( M ... N ) C_ ( 0 ... N ) )
3 nn0uz
 |-  NN0 = ( ZZ>= ` 0 )
4 2 3 eleq2s
 |-  ( M e. NN0 -> ( M ... N ) C_ ( 0 ... N ) )
5 1 4 sstrid
 |-  ( M e. NN0 -> ( M ..^ N ) C_ ( 0 ... N ) )
6 fz0ssnn0
 |-  ( 0 ... N ) C_ NN0
7 5 6 sstrdi
 |-  ( M e. NN0 -> ( M ..^ N ) C_ NN0 )