Metamath Proof Explorer


Theorem fzossz

Description: A half-open integer interval is a set of integers. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Assertion fzossz
|- ( M ..^ N ) C_ ZZ

Proof

Step Hyp Ref Expression
1 fzossfz
 |-  ( M ..^ N ) C_ ( M ... N )
2 fzssz
 |-  ( M ... N ) C_ ZZ
3 1 2 sstri
 |-  ( M ..^ N ) C_ ZZ