Step |
Hyp |
Ref |
Expression |
1 |
|
fsumm1.1 |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
2 |
|
fsumm1.2 |
|- ( ( ph /\ k e. ( M ... N ) ) -> A e. CC ) |
3 |
|
fsumm1.3 |
|- ( k = N -> A = B ) |
4 |
|
eluzelz |
|- ( N e. ( ZZ>= ` M ) -> N e. ZZ ) |
5 |
1 4
|
syl |
|- ( ph -> N e. ZZ ) |
6 |
|
fzoval |
|- ( N e. ZZ -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
7 |
5 6
|
syl |
|- ( ph -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
8 |
7
|
sumeq1d |
|- ( ph -> sum_ k e. ( M ..^ N ) A = sum_ k e. ( M ... ( N - 1 ) ) A ) |
9 |
8
|
oveq1d |
|- ( ph -> ( sum_ k e. ( M ..^ N ) A + B ) = ( sum_ k e. ( M ... ( N - 1 ) ) A + B ) ) |
10 |
1 2 3
|
fsumm1 |
|- ( ph -> sum_ k e. ( M ... N ) A = ( sum_ k e. ( M ... ( N - 1 ) ) A + B ) ) |
11 |
|
fzval3 |
|- ( N e. ZZ -> ( M ... N ) = ( M ..^ ( N + 1 ) ) ) |
12 |
5 11
|
syl |
|- ( ph -> ( M ... N ) = ( M ..^ ( N + 1 ) ) ) |
13 |
12
|
sumeq1d |
|- ( ph -> sum_ k e. ( M ... N ) A = sum_ k e. ( M ..^ ( N + 1 ) ) A ) |
14 |
9 10 13
|
3eqtr2rd |
|- ( ph -> sum_ k e. ( M ..^ ( N + 1 ) ) A = ( sum_ k e. ( M ..^ N ) A + B ) ) |