| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfzuz |
|- ( K e. ( M ... N ) -> K e. ( ZZ>= ` M ) ) |
| 2 |
|
peano2uz |
|- ( K e. ( ZZ>= ` M ) -> ( K + 1 ) e. ( ZZ>= ` M ) ) |
| 3 |
1 2
|
syl |
|- ( K e. ( M ... N ) -> ( K + 1 ) e. ( ZZ>= ` M ) ) |
| 4 |
|
elfzuz3 |
|- ( K e. ( M ... N ) -> N e. ( ZZ>= ` K ) ) |
| 5 |
|
eluzp1p1 |
|- ( N e. ( ZZ>= ` K ) -> ( N + 1 ) e. ( ZZ>= ` ( K + 1 ) ) ) |
| 6 |
4 5
|
syl |
|- ( K e. ( M ... N ) -> ( N + 1 ) e. ( ZZ>= ` ( K + 1 ) ) ) |
| 7 |
|
elfzuzb |
|- ( ( K + 1 ) e. ( M ... ( N + 1 ) ) <-> ( ( K + 1 ) e. ( ZZ>= ` M ) /\ ( N + 1 ) e. ( ZZ>= ` ( K + 1 ) ) ) ) |
| 8 |
3 6 7
|
sylanbrc |
|- ( K e. ( M ... N ) -> ( K + 1 ) e. ( M ... ( N + 1 ) ) ) |