Step |
Hyp |
Ref |
Expression |
1 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
2 |
|
uzid |
|- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
3 |
|
peano2uz |
|- ( M e. ( ZZ>= ` M ) -> ( M + 1 ) e. ( ZZ>= ` M ) ) |
4 |
1 2 3
|
3syl |
|- ( N e. ( ZZ>= ` M ) -> ( M + 1 ) e. ( ZZ>= ` M ) ) |
5 |
|
fzsplit2 |
|- ( ( ( M + 1 ) e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` M ) ) -> ( M ... N ) = ( ( M ... M ) u. ( ( M + 1 ) ... N ) ) ) |
6 |
4 5
|
mpancom |
|- ( N e. ( ZZ>= ` M ) -> ( M ... N ) = ( ( M ... M ) u. ( ( M + 1 ) ... N ) ) ) |
7 |
|
fzsn |
|- ( M e. ZZ -> ( M ... M ) = { M } ) |
8 |
1 7
|
syl |
|- ( N e. ( ZZ>= ` M ) -> ( M ... M ) = { M } ) |
9 |
8
|
uneq1d |
|- ( N e. ( ZZ>= ` M ) -> ( ( M ... M ) u. ( ( M + 1 ) ... N ) ) = ( { M } u. ( ( M + 1 ) ... N ) ) ) |
10 |
6 9
|
eqtrd |
|- ( N e. ( ZZ>= ` M ) -> ( M ... N ) = ( { M } u. ( ( M + 1 ) ... N ) ) ) |