Step |
Hyp |
Ref |
Expression |
1 |
|
fz12pr |
|- ( 1 ... 2 ) = { 1 , 2 } |
2 |
1
|
raleqi |
|- ( A. x e. ( 1 ... 2 ) ( F ` x ) = if ( x = 1 , A , B ) <-> A. x e. { 1 , 2 } ( F ` x ) = if ( x = 1 , A , B ) ) |
3 |
|
1ex |
|- 1 e. _V |
4 |
|
2ex |
|- 2 e. _V |
5 |
|
fveq2 |
|- ( x = 1 -> ( F ` x ) = ( F ` 1 ) ) |
6 |
|
iftrue |
|- ( x = 1 -> if ( x = 1 , A , B ) = A ) |
7 |
5 6
|
eqeq12d |
|- ( x = 1 -> ( ( F ` x ) = if ( x = 1 , A , B ) <-> ( F ` 1 ) = A ) ) |
8 |
|
fveq2 |
|- ( x = 2 -> ( F ` x ) = ( F ` 2 ) ) |
9 |
|
1ne2 |
|- 1 =/= 2 |
10 |
9
|
necomi |
|- 2 =/= 1 |
11 |
|
pm13.181 |
|- ( ( x = 2 /\ 2 =/= 1 ) -> x =/= 1 ) |
12 |
10 11
|
mpan2 |
|- ( x = 2 -> x =/= 1 ) |
13 |
12
|
neneqd |
|- ( x = 2 -> -. x = 1 ) |
14 |
13
|
iffalsed |
|- ( x = 2 -> if ( x = 1 , A , B ) = B ) |
15 |
8 14
|
eqeq12d |
|- ( x = 2 -> ( ( F ` x ) = if ( x = 1 , A , B ) <-> ( F ` 2 ) = B ) ) |
16 |
3 4 7 15
|
ralpr |
|- ( A. x e. { 1 , 2 } ( F ` x ) = if ( x = 1 , A , B ) <-> ( ( F ` 1 ) = A /\ ( F ` 2 ) = B ) ) |
17 |
2 16
|
bitri |
|- ( A. x e. ( 1 ... 2 ) ( F ` x ) = if ( x = 1 , A , B ) <-> ( ( F ` 1 ) = A /\ ( F ` 2 ) = B ) ) |