Metamath Proof Explorer


Theorem fzsplit

Description: Split a finite interval of integers into two parts. (Contributed by Jeff Madsen, 17-Jun-2010) (Revised by Mario Carneiro, 13-Apr-2016)

Ref Expression
Assertion fzsplit
|- ( K e. ( M ... N ) -> ( M ... N ) = ( ( M ... K ) u. ( ( K + 1 ) ... N ) ) )

Proof

Step Hyp Ref Expression
1 elfzuz
 |-  ( K e. ( M ... N ) -> K e. ( ZZ>= ` M ) )
2 peano2uz
 |-  ( K e. ( ZZ>= ` M ) -> ( K + 1 ) e. ( ZZ>= ` M ) )
3 1 2 syl
 |-  ( K e. ( M ... N ) -> ( K + 1 ) e. ( ZZ>= ` M ) )
4 elfzuz3
 |-  ( K e. ( M ... N ) -> N e. ( ZZ>= ` K ) )
5 fzsplit2
 |-  ( ( ( K + 1 ) e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` K ) ) -> ( M ... N ) = ( ( M ... K ) u. ( ( K + 1 ) ... N ) ) )
6 3 4 5 syl2anc
 |-  ( K e. ( M ... N ) -> ( M ... N ) = ( ( M ... K ) u. ( ( K + 1 ) ... N ) ) )