Step |
Hyp |
Ref |
Expression |
1 |
|
elfzuz |
|- ( k e. ( K ... N ) -> k e. ( ZZ>= ` K ) ) |
2 |
|
id |
|- ( K e. ( ZZ>= ` M ) -> K e. ( ZZ>= ` M ) ) |
3 |
|
uztrn |
|- ( ( k e. ( ZZ>= ` K ) /\ K e. ( ZZ>= ` M ) ) -> k e. ( ZZ>= ` M ) ) |
4 |
1 2 3
|
syl2anr |
|- ( ( K e. ( ZZ>= ` M ) /\ k e. ( K ... N ) ) -> k e. ( ZZ>= ` M ) ) |
5 |
|
elfzuz3 |
|- ( k e. ( K ... N ) -> N e. ( ZZ>= ` k ) ) |
6 |
5
|
adantl |
|- ( ( K e. ( ZZ>= ` M ) /\ k e. ( K ... N ) ) -> N e. ( ZZ>= ` k ) ) |
7 |
|
elfzuzb |
|- ( k e. ( M ... N ) <-> ( k e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` k ) ) ) |
8 |
4 6 7
|
sylanbrc |
|- ( ( K e. ( ZZ>= ` M ) /\ k e. ( K ... N ) ) -> k e. ( M ... N ) ) |
9 |
8
|
ex |
|- ( K e. ( ZZ>= ` M ) -> ( k e. ( K ... N ) -> k e. ( M ... N ) ) ) |
10 |
9
|
ssrdv |
|- ( K e. ( ZZ>= ` M ) -> ( K ... N ) C_ ( M ... N ) ) |