Step |
Hyp |
Ref |
Expression |
1 |
|
elfzuz |
|- ( k e. ( M ... K ) -> k e. ( ZZ>= ` M ) ) |
2 |
1
|
adantl |
|- ( ( N e. ( ZZ>= ` K ) /\ k e. ( M ... K ) ) -> k e. ( ZZ>= ` M ) ) |
3 |
|
elfzuz3 |
|- ( k e. ( M ... K ) -> K e. ( ZZ>= ` k ) ) |
4 |
|
uztrn |
|- ( ( N e. ( ZZ>= ` K ) /\ K e. ( ZZ>= ` k ) ) -> N e. ( ZZ>= ` k ) ) |
5 |
3 4
|
sylan2 |
|- ( ( N e. ( ZZ>= ` K ) /\ k e. ( M ... K ) ) -> N e. ( ZZ>= ` k ) ) |
6 |
|
elfzuzb |
|- ( k e. ( M ... N ) <-> ( k e. ( ZZ>= ` M ) /\ N e. ( ZZ>= ` k ) ) ) |
7 |
2 5 6
|
sylanbrc |
|- ( ( N e. ( ZZ>= ` K ) /\ k e. ( M ... K ) ) -> k e. ( M ... N ) ) |
8 |
7
|
ex |
|- ( N e. ( ZZ>= ` K ) -> ( k e. ( M ... K ) -> k e. ( M ... N ) ) ) |
9 |
8
|
ssrdv |
|- ( N e. ( ZZ>= ` K ) -> ( M ... K ) C_ ( M ... N ) ) |