Description: Subset relationship for finite sets of sequential integers. (Contributed by NM, 21-Jul-2005) (Revised by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzssp1 | |- ( M ... N ) C_ ( M ... ( N + 1 ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elfzel2 | |- ( k e. ( M ... N ) -> N e. ZZ )  | 
						|
| 2 | uzid | |- ( N e. ZZ -> N e. ( ZZ>= ` N ) )  | 
						|
| 3 | peano2uz | |- ( N e. ( ZZ>= ` N ) -> ( N + 1 ) e. ( ZZ>= ` N ) )  | 
						|
| 4 | fzss2 | |- ( ( N + 1 ) e. ( ZZ>= ` N ) -> ( M ... N ) C_ ( M ... ( N + 1 ) ) )  | 
						|
| 5 | 1 2 3 4 | 4syl | |- ( k e. ( M ... N ) -> ( M ... N ) C_ ( M ... ( N + 1 ) ) )  | 
						
| 6 | id | |- ( k e. ( M ... N ) -> k e. ( M ... N ) )  | 
						|
| 7 | 5 6 | sseldd | |- ( k e. ( M ... N ) -> k e. ( M ... ( N + 1 ) ) )  | 
						
| 8 | 7 | ssriv | |- ( M ... N ) C_ ( M ... ( N + 1 ) )  |