Metamath Proof Explorer


Theorem fzssp1

Description: Subset relationship for finite sets of sequential integers. (Contributed by NM, 21-Jul-2005) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion fzssp1
|- ( M ... N ) C_ ( M ... ( N + 1 ) )

Proof

Step Hyp Ref Expression
1 elfzel2
 |-  ( k e. ( M ... N ) -> N e. ZZ )
2 uzid
 |-  ( N e. ZZ -> N e. ( ZZ>= ` N ) )
3 peano2uz
 |-  ( N e. ( ZZ>= ` N ) -> ( N + 1 ) e. ( ZZ>= ` N ) )
4 fzss2
 |-  ( ( N + 1 ) e. ( ZZ>= ` N ) -> ( M ... N ) C_ ( M ... ( N + 1 ) ) )
5 1 2 3 4 4syl
 |-  ( k e. ( M ... N ) -> ( M ... N ) C_ ( M ... ( N + 1 ) ) )
6 id
 |-  ( k e. ( M ... N ) -> k e. ( M ... N ) )
7 5 6 sseldd
 |-  ( k e. ( M ... N ) -> k e. ( M ... ( N + 1 ) ) )
8 7 ssriv
 |-  ( M ... N ) C_ ( M ... ( N + 1 ) )