Description: Subset relationship for finite sets of sequential integers. (Contributed by NM, 21-Jul-2005) (Revised by Mario Carneiro, 28-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | fzssp1 | |- ( M ... N ) C_ ( M ... ( N + 1 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzel2 | |- ( k e. ( M ... N ) -> N e. ZZ ) |
|
2 | uzid | |- ( N e. ZZ -> N e. ( ZZ>= ` N ) ) |
|
3 | peano2uz | |- ( N e. ( ZZ>= ` N ) -> ( N + 1 ) e. ( ZZ>= ` N ) ) |
|
4 | fzss2 | |- ( ( N + 1 ) e. ( ZZ>= ` N ) -> ( M ... N ) C_ ( M ... ( N + 1 ) ) ) |
|
5 | 1 2 3 4 | 4syl | |- ( k e. ( M ... N ) -> ( M ... N ) C_ ( M ... ( N + 1 ) ) ) |
6 | id | |- ( k e. ( M ... N ) -> k e. ( M ... N ) ) |
|
7 | 5 6 | sseldd | |- ( k e. ( M ... N ) -> k e. ( M ... ( N + 1 ) ) ) |
8 | 7 | ssriv | |- ( M ... N ) C_ ( M ... ( N + 1 ) ) |