Step |
Hyp |
Ref |
Expression |
1 |
|
znegcl |
|- ( K e. ZZ -> -u K e. ZZ ) |
2 |
|
fzaddel |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( J e. ZZ /\ -u K e. ZZ ) ) -> ( J e. ( M ... N ) <-> ( J + -u K ) e. ( ( M + -u K ) ... ( N + -u K ) ) ) ) |
3 |
1 2
|
sylanr2 |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( J e. ZZ /\ K e. ZZ ) ) -> ( J e. ( M ... N ) <-> ( J + -u K ) e. ( ( M + -u K ) ... ( N + -u K ) ) ) ) |
4 |
|
zcn |
|- ( M e. ZZ -> M e. CC ) |
5 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
6 |
4 5
|
anim12i |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M e. CC /\ N e. CC ) ) |
7 |
|
zcn |
|- ( J e. ZZ -> J e. CC ) |
8 |
|
zcn |
|- ( K e. ZZ -> K e. CC ) |
9 |
7 8
|
anim12i |
|- ( ( J e. ZZ /\ K e. ZZ ) -> ( J e. CC /\ K e. CC ) ) |
10 |
|
negsub |
|- ( ( J e. CC /\ K e. CC ) -> ( J + -u K ) = ( J - K ) ) |
11 |
10
|
adantl |
|- ( ( ( M e. CC /\ N e. CC ) /\ ( J e. CC /\ K e. CC ) ) -> ( J + -u K ) = ( J - K ) ) |
12 |
|
negsub |
|- ( ( M e. CC /\ K e. CC ) -> ( M + -u K ) = ( M - K ) ) |
13 |
|
negsub |
|- ( ( N e. CC /\ K e. CC ) -> ( N + -u K ) = ( N - K ) ) |
14 |
12 13
|
oveqan12d |
|- ( ( ( M e. CC /\ K e. CC ) /\ ( N e. CC /\ K e. CC ) ) -> ( ( M + -u K ) ... ( N + -u K ) ) = ( ( M - K ) ... ( N - K ) ) ) |
15 |
14
|
anandirs |
|- ( ( ( M e. CC /\ N e. CC ) /\ K e. CC ) -> ( ( M + -u K ) ... ( N + -u K ) ) = ( ( M - K ) ... ( N - K ) ) ) |
16 |
15
|
adantrl |
|- ( ( ( M e. CC /\ N e. CC ) /\ ( J e. CC /\ K e. CC ) ) -> ( ( M + -u K ) ... ( N + -u K ) ) = ( ( M - K ) ... ( N - K ) ) ) |
17 |
11 16
|
eleq12d |
|- ( ( ( M e. CC /\ N e. CC ) /\ ( J e. CC /\ K e. CC ) ) -> ( ( J + -u K ) e. ( ( M + -u K ) ... ( N + -u K ) ) <-> ( J - K ) e. ( ( M - K ) ... ( N - K ) ) ) ) |
18 |
6 9 17
|
syl2an |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( J e. ZZ /\ K e. ZZ ) ) -> ( ( J + -u K ) e. ( ( M + -u K ) ... ( N + -u K ) ) <-> ( J - K ) e. ( ( M - K ) ... ( N - K ) ) ) ) |
19 |
3 18
|
bitrd |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( J e. ZZ /\ K e. ZZ ) ) -> ( J e. ( M ... N ) <-> ( J - K ) e. ( ( M - K ) ... ( N - K ) ) ) ) |