| Step |
Hyp |
Ref |
Expression |
| 1 |
|
peano2uz |
|- ( N e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( ZZ>= ` M ) ) |
| 2 |
|
eluzfz2 |
|- ( ( N + 1 ) e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( M ... ( N + 1 ) ) ) |
| 3 |
1 2
|
syl |
|- ( N e. ( ZZ>= ` M ) -> ( N + 1 ) e. ( M ... ( N + 1 ) ) ) |
| 4 |
|
peano2fzr |
|- ( ( N e. ( ZZ>= ` M ) /\ ( N + 1 ) e. ( M ... ( N + 1 ) ) ) -> N e. ( M ... ( N + 1 ) ) ) |
| 5 |
3 4
|
mpdan |
|- ( N e. ( ZZ>= ` M ) -> N e. ( M ... ( N + 1 ) ) ) |
| 6 |
|
fzsplit |
|- ( N e. ( M ... ( N + 1 ) ) -> ( M ... ( N + 1 ) ) = ( ( M ... N ) u. ( ( N + 1 ) ... ( N + 1 ) ) ) ) |
| 7 |
5 6
|
syl |
|- ( N e. ( ZZ>= ` M ) -> ( M ... ( N + 1 ) ) = ( ( M ... N ) u. ( ( N + 1 ) ... ( N + 1 ) ) ) ) |
| 8 |
|
eluzelz |
|- ( ( N + 1 ) e. ( ZZ>= ` M ) -> ( N + 1 ) e. ZZ ) |
| 9 |
|
fzsn |
|- ( ( N + 1 ) e. ZZ -> ( ( N + 1 ) ... ( N + 1 ) ) = { ( N + 1 ) } ) |
| 10 |
1 8 9
|
3syl |
|- ( N e. ( ZZ>= ` M ) -> ( ( N + 1 ) ... ( N + 1 ) ) = { ( N + 1 ) } ) |
| 11 |
10
|
uneq2d |
|- ( N e. ( ZZ>= ` M ) -> ( ( M ... N ) u. ( ( N + 1 ) ... ( N + 1 ) ) ) = ( ( M ... N ) u. { ( N + 1 ) } ) ) |
| 12 |
7 11
|
eqtrd |
|- ( N e. ( ZZ>= ` M ) -> ( M ... ( N + 1 ) ) = ( ( M ... N ) u. { ( N + 1 ) } ) ) |