| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uzid |
|- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
| 2 |
|
peano2uz |
|- ( M e. ( ZZ>= ` M ) -> ( M + 1 ) e. ( ZZ>= ` M ) ) |
| 3 |
|
fzsuc |
|- ( ( M + 1 ) e. ( ZZ>= ` M ) -> ( M ... ( ( M + 1 ) + 1 ) ) = ( ( M ... ( M + 1 ) ) u. { ( ( M + 1 ) + 1 ) } ) ) |
| 4 |
1 2 3
|
3syl |
|- ( M e. ZZ -> ( M ... ( ( M + 1 ) + 1 ) ) = ( ( M ... ( M + 1 ) ) u. { ( ( M + 1 ) + 1 ) } ) ) |
| 5 |
|
zcn |
|- ( M e. ZZ -> M e. CC ) |
| 6 |
|
ax-1cn |
|- 1 e. CC |
| 7 |
|
addass |
|- ( ( M e. CC /\ 1 e. CC /\ 1 e. CC ) -> ( ( M + 1 ) + 1 ) = ( M + ( 1 + 1 ) ) ) |
| 8 |
6 6 7
|
mp3an23 |
|- ( M e. CC -> ( ( M + 1 ) + 1 ) = ( M + ( 1 + 1 ) ) ) |
| 9 |
5 8
|
syl |
|- ( M e. ZZ -> ( ( M + 1 ) + 1 ) = ( M + ( 1 + 1 ) ) ) |
| 10 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 11 |
10
|
oveq2i |
|- ( M + 2 ) = ( M + ( 1 + 1 ) ) |
| 12 |
9 11
|
eqtr4di |
|- ( M e. ZZ -> ( ( M + 1 ) + 1 ) = ( M + 2 ) ) |
| 13 |
12
|
oveq2d |
|- ( M e. ZZ -> ( M ... ( ( M + 1 ) + 1 ) ) = ( M ... ( M + 2 ) ) ) |
| 14 |
|
fzpr |
|- ( M e. ZZ -> ( M ... ( M + 1 ) ) = { M , ( M + 1 ) } ) |
| 15 |
12
|
sneqd |
|- ( M e. ZZ -> { ( ( M + 1 ) + 1 ) } = { ( M + 2 ) } ) |
| 16 |
14 15
|
uneq12d |
|- ( M e. ZZ -> ( ( M ... ( M + 1 ) ) u. { ( ( M + 1 ) + 1 ) } ) = ( { M , ( M + 1 ) } u. { ( M + 2 ) } ) ) |
| 17 |
|
df-tp |
|- { M , ( M + 1 ) , ( M + 2 ) } = ( { M , ( M + 1 ) } u. { ( M + 2 ) } ) |
| 18 |
16 17
|
eqtr4di |
|- ( M e. ZZ -> ( ( M ... ( M + 1 ) ) u. { ( ( M + 1 ) + 1 ) } ) = { M , ( M + 1 ) , ( M + 2 ) } ) |
| 19 |
4 13 18
|
3eqtr3d |
|- ( M e. ZZ -> ( M ... ( M + 2 ) ) = { M , ( M + 1 ) , ( M + 2 ) } ) |