| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fzval | 
							 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M ... N ) = { k e. ZZ | ( M <_ k /\ k <_ N ) } ) | 
						
						
							| 2 | 
							
								
							 | 
							zssre | 
							 |-  ZZ C_ RR  | 
						
						
							| 3 | 
							
								
							 | 
							ressxr | 
							 |-  RR C_ RR*  | 
						
						
							| 4 | 
							
								2 3
							 | 
							sstri | 
							 |-  ZZ C_ RR*  | 
						
						
							| 5 | 
							
								4
							 | 
							sseli | 
							 |-  ( M e. ZZ -> M e. RR* )  | 
						
						
							| 6 | 
							
								4
							 | 
							sseli | 
							 |-  ( N e. ZZ -> N e. RR* )  | 
						
						
							| 7 | 
							
								
							 | 
							iccval | 
							 |-  ( ( M e. RR* /\ N e. RR* ) -> ( M [,] N ) = { k e. RR* | ( M <_ k /\ k <_ N ) } ) | 
						
						
							| 8 | 
							
								5 6 7
							 | 
							syl2an | 
							 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M [,] N ) = { k e. RR* | ( M <_ k /\ k <_ N ) } ) | 
						
						
							| 9 | 
							
								8
							 | 
							ineq1d | 
							 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M [,] N ) i^i ZZ ) = ( { k e. RR* | ( M <_ k /\ k <_ N ) } i^i ZZ ) ) | 
						
						
							| 10 | 
							
								
							 | 
							inrab2 | 
							 |-  ( { k e. RR* | ( M <_ k /\ k <_ N ) } i^i ZZ ) = { k e. ( RR* i^i ZZ ) | ( M <_ k /\ k <_ N ) } | 
						
						
							| 11 | 
							
								
							 | 
							sseqin2 | 
							 |-  ( ZZ C_ RR* <-> ( RR* i^i ZZ ) = ZZ )  | 
						
						
							| 12 | 
							
								4 11
							 | 
							mpbi | 
							 |-  ( RR* i^i ZZ ) = ZZ  | 
						
						
							| 13 | 
							
								12
							 | 
							rabeqi | 
							 |-  { k e. ( RR* i^i ZZ ) | ( M <_ k /\ k <_ N ) } = { k e. ZZ | ( M <_ k /\ k <_ N ) } | 
						
						
							| 14 | 
							
								10 13
							 | 
							eqtri | 
							 |-  ( { k e. RR* | ( M <_ k /\ k <_ N ) } i^i ZZ ) = { k e. ZZ | ( M <_ k /\ k <_ N ) } | 
						
						
							| 15 | 
							
								9 14
							 | 
							eqtr2di | 
							 |-  ( ( M e. ZZ /\ N e. ZZ ) -> { k e. ZZ | ( M <_ k /\ k <_ N ) } = ( ( M [,] N ) i^i ZZ ) ) | 
						
						
							| 16 | 
							
								1 15
							 | 
							eqtrd | 
							 |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M ... N ) = ( ( M [,] N ) i^i ZZ ) )  |