| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gaid.1 |  |-  X = ( Base ` G ) | 
						
							| 2 |  | elex |  |-  ( S e. V -> S e. _V ) | 
						
							| 3 | 2 | anim2i |  |-  ( ( G e. Grp /\ S e. V ) -> ( G e. Grp /\ S e. _V ) ) | 
						
							| 4 |  | eqid |  |-  ( 0g ` G ) = ( 0g ` G ) | 
						
							| 5 | 1 4 | grpidcl |  |-  ( G e. Grp -> ( 0g ` G ) e. X ) | 
						
							| 6 | 5 | adantr |  |-  ( ( G e. Grp /\ S e. V ) -> ( 0g ` G ) e. X ) | 
						
							| 7 |  | ovres |  |-  ( ( ( 0g ` G ) e. X /\ x e. S ) -> ( ( 0g ` G ) ( 2nd |` ( X X. S ) ) x ) = ( ( 0g ` G ) 2nd x ) ) | 
						
							| 8 |  | df-ov |  |-  ( ( 0g ` G ) 2nd x ) = ( 2nd ` <. ( 0g ` G ) , x >. ) | 
						
							| 9 |  | fvex |  |-  ( 0g ` G ) e. _V | 
						
							| 10 |  | vex |  |-  x e. _V | 
						
							| 11 | 9 10 | op2nd |  |-  ( 2nd ` <. ( 0g ` G ) , x >. ) = x | 
						
							| 12 | 8 11 | eqtri |  |-  ( ( 0g ` G ) 2nd x ) = x | 
						
							| 13 | 7 12 | eqtrdi |  |-  ( ( ( 0g ` G ) e. X /\ x e. S ) -> ( ( 0g ` G ) ( 2nd |` ( X X. S ) ) x ) = x ) | 
						
							| 14 | 6 13 | sylan |  |-  ( ( ( G e. Grp /\ S e. V ) /\ x e. S ) -> ( ( 0g ` G ) ( 2nd |` ( X X. S ) ) x ) = x ) | 
						
							| 15 |  | simprl |  |-  ( ( ( ( G e. Grp /\ S e. V ) /\ x e. S ) /\ ( y e. X /\ z e. X ) ) -> y e. X ) | 
						
							| 16 |  | simplr |  |-  ( ( ( ( G e. Grp /\ S e. V ) /\ x e. S ) /\ ( y e. X /\ z e. X ) ) -> x e. S ) | 
						
							| 17 |  | ovres |  |-  ( ( y e. X /\ x e. S ) -> ( y ( 2nd |` ( X X. S ) ) x ) = ( y 2nd x ) ) | 
						
							| 18 |  | df-ov |  |-  ( y 2nd x ) = ( 2nd ` <. y , x >. ) | 
						
							| 19 |  | vex |  |-  y e. _V | 
						
							| 20 | 19 10 | op2nd |  |-  ( 2nd ` <. y , x >. ) = x | 
						
							| 21 | 18 20 | eqtri |  |-  ( y 2nd x ) = x | 
						
							| 22 | 17 21 | eqtrdi |  |-  ( ( y e. X /\ x e. S ) -> ( y ( 2nd |` ( X X. S ) ) x ) = x ) | 
						
							| 23 | 15 16 22 | syl2anc |  |-  ( ( ( ( G e. Grp /\ S e. V ) /\ x e. S ) /\ ( y e. X /\ z e. X ) ) -> ( y ( 2nd |` ( X X. S ) ) x ) = x ) | 
						
							| 24 |  | simprr |  |-  ( ( ( ( G e. Grp /\ S e. V ) /\ x e. S ) /\ ( y e. X /\ z e. X ) ) -> z e. X ) | 
						
							| 25 |  | ovres |  |-  ( ( z e. X /\ x e. S ) -> ( z ( 2nd |` ( X X. S ) ) x ) = ( z 2nd x ) ) | 
						
							| 26 |  | df-ov |  |-  ( z 2nd x ) = ( 2nd ` <. z , x >. ) | 
						
							| 27 |  | vex |  |-  z e. _V | 
						
							| 28 | 27 10 | op2nd |  |-  ( 2nd ` <. z , x >. ) = x | 
						
							| 29 | 26 28 | eqtri |  |-  ( z 2nd x ) = x | 
						
							| 30 | 25 29 | eqtrdi |  |-  ( ( z e. X /\ x e. S ) -> ( z ( 2nd |` ( X X. S ) ) x ) = x ) | 
						
							| 31 | 24 16 30 | syl2anc |  |-  ( ( ( ( G e. Grp /\ S e. V ) /\ x e. S ) /\ ( y e. X /\ z e. X ) ) -> ( z ( 2nd |` ( X X. S ) ) x ) = x ) | 
						
							| 32 | 31 | oveq2d |  |-  ( ( ( ( G e. Grp /\ S e. V ) /\ x e. S ) /\ ( y e. X /\ z e. X ) ) -> ( y ( 2nd |` ( X X. S ) ) ( z ( 2nd |` ( X X. S ) ) x ) ) = ( y ( 2nd |` ( X X. S ) ) x ) ) | 
						
							| 33 |  | eqid |  |-  ( +g ` G ) = ( +g ` G ) | 
						
							| 34 | 1 33 | grpcl |  |-  ( ( G e. Grp /\ y e. X /\ z e. X ) -> ( y ( +g ` G ) z ) e. X ) | 
						
							| 35 | 34 | 3expb |  |-  ( ( G e. Grp /\ ( y e. X /\ z e. X ) ) -> ( y ( +g ` G ) z ) e. X ) | 
						
							| 36 | 35 | ad4ant14 |  |-  ( ( ( ( G e. Grp /\ S e. V ) /\ x e. S ) /\ ( y e. X /\ z e. X ) ) -> ( y ( +g ` G ) z ) e. X ) | 
						
							| 37 |  | ovres |  |-  ( ( ( y ( +g ` G ) z ) e. X /\ x e. S ) -> ( ( y ( +g ` G ) z ) ( 2nd |` ( X X. S ) ) x ) = ( ( y ( +g ` G ) z ) 2nd x ) ) | 
						
							| 38 |  | df-ov |  |-  ( ( y ( +g ` G ) z ) 2nd x ) = ( 2nd ` <. ( y ( +g ` G ) z ) , x >. ) | 
						
							| 39 |  | ovex |  |-  ( y ( +g ` G ) z ) e. _V | 
						
							| 40 | 39 10 | op2nd |  |-  ( 2nd ` <. ( y ( +g ` G ) z ) , x >. ) = x | 
						
							| 41 | 38 40 | eqtri |  |-  ( ( y ( +g ` G ) z ) 2nd x ) = x | 
						
							| 42 | 37 41 | eqtrdi |  |-  ( ( ( y ( +g ` G ) z ) e. X /\ x e. S ) -> ( ( y ( +g ` G ) z ) ( 2nd |` ( X X. S ) ) x ) = x ) | 
						
							| 43 | 36 16 42 | syl2anc |  |-  ( ( ( ( G e. Grp /\ S e. V ) /\ x e. S ) /\ ( y e. X /\ z e. X ) ) -> ( ( y ( +g ` G ) z ) ( 2nd |` ( X X. S ) ) x ) = x ) | 
						
							| 44 | 23 32 43 | 3eqtr4rd |  |-  ( ( ( ( G e. Grp /\ S e. V ) /\ x e. S ) /\ ( y e. X /\ z e. X ) ) -> ( ( y ( +g ` G ) z ) ( 2nd |` ( X X. S ) ) x ) = ( y ( 2nd |` ( X X. S ) ) ( z ( 2nd |` ( X X. S ) ) x ) ) ) | 
						
							| 45 | 44 | ralrimivva |  |-  ( ( ( G e. Grp /\ S e. V ) /\ x e. S ) -> A. y e. X A. z e. X ( ( y ( +g ` G ) z ) ( 2nd |` ( X X. S ) ) x ) = ( y ( 2nd |` ( X X. S ) ) ( z ( 2nd |` ( X X. S ) ) x ) ) ) | 
						
							| 46 | 14 45 | jca |  |-  ( ( ( G e. Grp /\ S e. V ) /\ x e. S ) -> ( ( ( 0g ` G ) ( 2nd |` ( X X. S ) ) x ) = x /\ A. y e. X A. z e. X ( ( y ( +g ` G ) z ) ( 2nd |` ( X X. S ) ) x ) = ( y ( 2nd |` ( X X. S ) ) ( z ( 2nd |` ( X X. S ) ) x ) ) ) ) | 
						
							| 47 | 46 | ralrimiva |  |-  ( ( G e. Grp /\ S e. V ) -> A. x e. S ( ( ( 0g ` G ) ( 2nd |` ( X X. S ) ) x ) = x /\ A. y e. X A. z e. X ( ( y ( +g ` G ) z ) ( 2nd |` ( X X. S ) ) x ) = ( y ( 2nd |` ( X X. S ) ) ( z ( 2nd |` ( X X. S ) ) x ) ) ) ) | 
						
							| 48 |  | f2ndres |  |-  ( 2nd |` ( X X. S ) ) : ( X X. S ) --> S | 
						
							| 49 | 47 48 | jctil |  |-  ( ( G e. Grp /\ S e. V ) -> ( ( 2nd |` ( X X. S ) ) : ( X X. S ) --> S /\ A. x e. S ( ( ( 0g ` G ) ( 2nd |` ( X X. S ) ) x ) = x /\ A. y e. X A. z e. X ( ( y ( +g ` G ) z ) ( 2nd |` ( X X. S ) ) x ) = ( y ( 2nd |` ( X X. S ) ) ( z ( 2nd |` ( X X. S ) ) x ) ) ) ) ) | 
						
							| 50 | 1 33 4 | isga |  |-  ( ( 2nd |` ( X X. S ) ) e. ( G GrpAct S ) <-> ( ( G e. Grp /\ S e. _V ) /\ ( ( 2nd |` ( X X. S ) ) : ( X X. S ) --> S /\ A. x e. S ( ( ( 0g ` G ) ( 2nd |` ( X X. S ) ) x ) = x /\ A. y e. X A. z e. X ( ( y ( +g ` G ) z ) ( 2nd |` ( X X. S ) ) x ) = ( y ( 2nd |` ( X X. S ) ) ( z ( 2nd |` ( X X. S ) ) x ) ) ) ) ) ) | 
						
							| 51 | 3 49 50 | sylanbrc |  |-  ( ( G e. Grp /\ S e. V ) -> ( 2nd |` ( X X. S ) ) e. ( G GrpAct S ) ) |