Metamath Proof Explorer


Theorem gaorb

Description: The orbit equivalence relation puts two points in the group action in the same equivalence class iff there is a group element that takes one element to the other. (Contributed by Mario Carneiro, 14-Jan-2015)

Ref Expression
Hypothesis gaorb.1
|- .~ = { <. x , y >. | ( { x , y } C_ Y /\ E. g e. X ( g .(+) x ) = y ) }
Assertion gaorb
|- ( A .~ B <-> ( A e. Y /\ B e. Y /\ E. h e. X ( h .(+) A ) = B ) )

Proof

Step Hyp Ref Expression
1 gaorb.1
 |-  .~ = { <. x , y >. | ( { x , y } C_ Y /\ E. g e. X ( g .(+) x ) = y ) }
2 oveq2
 |-  ( x = A -> ( g .(+) x ) = ( g .(+) A ) )
3 eqeq12
 |-  ( ( ( g .(+) x ) = ( g .(+) A ) /\ y = B ) -> ( ( g .(+) x ) = y <-> ( g .(+) A ) = B ) )
4 2 3 sylan
 |-  ( ( x = A /\ y = B ) -> ( ( g .(+) x ) = y <-> ( g .(+) A ) = B ) )
5 4 rexbidv
 |-  ( ( x = A /\ y = B ) -> ( E. g e. X ( g .(+) x ) = y <-> E. g e. X ( g .(+) A ) = B ) )
6 oveq1
 |-  ( g = h -> ( g .(+) A ) = ( h .(+) A ) )
7 6 eqeq1d
 |-  ( g = h -> ( ( g .(+) A ) = B <-> ( h .(+) A ) = B ) )
8 7 cbvrexvw
 |-  ( E. g e. X ( g .(+) A ) = B <-> E. h e. X ( h .(+) A ) = B )
9 5 8 bitrdi
 |-  ( ( x = A /\ y = B ) -> ( E. g e. X ( g .(+) x ) = y <-> E. h e. X ( h .(+) A ) = B ) )
10 vex
 |-  x e. _V
11 vex
 |-  y e. _V
12 10 11 prss
 |-  ( ( x e. Y /\ y e. Y ) <-> { x , y } C_ Y )
13 12 anbi1i
 |-  ( ( ( x e. Y /\ y e. Y ) /\ E. g e. X ( g .(+) x ) = y ) <-> ( { x , y } C_ Y /\ E. g e. X ( g .(+) x ) = y ) )
14 13 opabbii
 |-  { <. x , y >. | ( ( x e. Y /\ y e. Y ) /\ E. g e. X ( g .(+) x ) = y ) } = { <. x , y >. | ( { x , y } C_ Y /\ E. g e. X ( g .(+) x ) = y ) }
15 1 14 eqtr4i
 |-  .~ = { <. x , y >. | ( ( x e. Y /\ y e. Y ) /\ E. g e. X ( g .(+) x ) = y ) }
16 9 15 brab2a
 |-  ( A .~ B <-> ( ( A e. Y /\ B e. Y ) /\ E. h e. X ( h .(+) A ) = B ) )
17 df-3an
 |-  ( ( A e. Y /\ B e. Y /\ E. h e. X ( h .(+) A ) = B ) <-> ( ( A e. Y /\ B e. Y ) /\ E. h e. X ( h .(+) A ) = B ) )
18 16 17 bitr4i
 |-  ( A .~ B <-> ( A e. Y /\ B e. Y /\ E. h e. X ( h .(+) A ) = B ) )