| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gausslemma2d.p |
|- ( ph -> P e. ( Prime \ { 2 } ) ) |
| 2 |
|
gausslemma2d.h |
|- H = ( ( P - 1 ) / 2 ) |
| 3 |
|
gausslemma2d.r |
|- R = ( x e. ( 1 ... H ) |-> if ( ( x x. 2 ) < ( P / 2 ) , ( x x. 2 ) , ( P - ( x x. 2 ) ) ) ) |
| 4 |
|
gausslemma2d.m |
|- M = ( |_ ` ( P / 4 ) ) |
| 5 |
|
gausslemma2d.n |
|- N = ( H - M ) |
| 6 |
1 2 3 4 5
|
gausslemma2dlem7 |
|- ( ph -> ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = 1 ) |
| 7 |
|
eldifi |
|- ( P e. ( Prime \ { 2 } ) -> P e. Prime ) |
| 8 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 9 |
8
|
nnred |
|- ( P e. Prime -> P e. RR ) |
| 10 |
|
prmgt1 |
|- ( P e. Prime -> 1 < P ) |
| 11 |
9 10
|
jca |
|- ( P e. Prime -> ( P e. RR /\ 1 < P ) ) |
| 12 |
|
1mod |
|- ( ( P e. RR /\ 1 < P ) -> ( 1 mod P ) = 1 ) |
| 13 |
1 7 11 12
|
4syl |
|- ( ph -> ( 1 mod P ) = 1 ) |
| 14 |
13
|
eqcomd |
|- ( ph -> 1 = ( 1 mod P ) ) |
| 15 |
14
|
eqeq2d |
|- ( ph -> ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = 1 <-> ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = ( 1 mod P ) ) ) |
| 16 |
|
neg1z |
|- -u 1 e. ZZ |
| 17 |
1 4 2 5
|
gausslemma2dlem0h |
|- ( ph -> N e. NN0 ) |
| 18 |
|
zexpcl |
|- ( ( -u 1 e. ZZ /\ N e. NN0 ) -> ( -u 1 ^ N ) e. ZZ ) |
| 19 |
16 17 18
|
sylancr |
|- ( ph -> ( -u 1 ^ N ) e. ZZ ) |
| 20 |
|
2nn |
|- 2 e. NN |
| 21 |
20
|
a1i |
|- ( ph -> 2 e. NN ) |
| 22 |
1 2
|
gausslemma2dlem0b |
|- ( ph -> H e. NN ) |
| 23 |
22
|
nnnn0d |
|- ( ph -> H e. NN0 ) |
| 24 |
21 23
|
nnexpcld |
|- ( ph -> ( 2 ^ H ) e. NN ) |
| 25 |
24
|
nnzd |
|- ( ph -> ( 2 ^ H ) e. ZZ ) |
| 26 |
19 25
|
zmulcld |
|- ( ph -> ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) e. ZZ ) |
| 27 |
26
|
zred |
|- ( ph -> ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) e. RR ) |
| 28 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 29 |
27 28
|
jca |
|- ( ph -> ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) e. RR /\ 1 e. RR ) ) |
| 30 |
29
|
adantr |
|- ( ( ph /\ ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = ( 1 mod P ) ) -> ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) e. RR /\ 1 e. RR ) ) |
| 31 |
1
|
gausslemma2dlem0a |
|- ( ph -> P e. NN ) |
| 32 |
31
|
nnrpd |
|- ( ph -> P e. RR+ ) |
| 33 |
19 32
|
jca |
|- ( ph -> ( ( -u 1 ^ N ) e. ZZ /\ P e. RR+ ) ) |
| 34 |
33
|
adantr |
|- ( ( ph /\ ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = ( 1 mod P ) ) -> ( ( -u 1 ^ N ) e. ZZ /\ P e. RR+ ) ) |
| 35 |
|
simpr |
|- ( ( ph /\ ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = ( 1 mod P ) ) -> ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = ( 1 mod P ) ) |
| 36 |
|
modmul1 |
|- ( ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) e. RR /\ 1 e. RR ) /\ ( ( -u 1 ^ N ) e. ZZ /\ P e. RR+ ) /\ ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = ( 1 mod P ) ) -> ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( -u 1 ^ N ) ) mod P ) = ( ( 1 x. ( -u 1 ^ N ) ) mod P ) ) |
| 37 |
30 34 35 36
|
syl3anc |
|- ( ( ph /\ ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = ( 1 mod P ) ) -> ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( -u 1 ^ N ) ) mod P ) = ( ( 1 x. ( -u 1 ^ N ) ) mod P ) ) |
| 38 |
37
|
ex |
|- ( ph -> ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = ( 1 mod P ) -> ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( -u 1 ^ N ) ) mod P ) = ( ( 1 x. ( -u 1 ^ N ) ) mod P ) ) ) |
| 39 |
19
|
zcnd |
|- ( ph -> ( -u 1 ^ N ) e. CC ) |
| 40 |
24
|
nncnd |
|- ( ph -> ( 2 ^ H ) e. CC ) |
| 41 |
39 40 39
|
mul32d |
|- ( ph -> ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( -u 1 ^ N ) ) = ( ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) x. ( 2 ^ H ) ) ) |
| 42 |
17
|
nn0cnd |
|- ( ph -> N e. CC ) |
| 43 |
42
|
2timesd |
|- ( ph -> ( 2 x. N ) = ( N + N ) ) |
| 44 |
43
|
eqcomd |
|- ( ph -> ( N + N ) = ( 2 x. N ) ) |
| 45 |
44
|
oveq2d |
|- ( ph -> ( -u 1 ^ ( N + N ) ) = ( -u 1 ^ ( 2 x. N ) ) ) |
| 46 |
|
neg1cn |
|- -u 1 e. CC |
| 47 |
46
|
a1i |
|- ( ph -> -u 1 e. CC ) |
| 48 |
47 17 17
|
expaddd |
|- ( ph -> ( -u 1 ^ ( N + N ) ) = ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) ) |
| 49 |
17
|
nn0zd |
|- ( ph -> N e. ZZ ) |
| 50 |
|
m1expeven |
|- ( N e. ZZ -> ( -u 1 ^ ( 2 x. N ) ) = 1 ) |
| 51 |
49 50
|
syl |
|- ( ph -> ( -u 1 ^ ( 2 x. N ) ) = 1 ) |
| 52 |
45 48 51
|
3eqtr3d |
|- ( ph -> ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) = 1 ) |
| 53 |
52
|
oveq1d |
|- ( ph -> ( ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) x. ( 2 ^ H ) ) = ( 1 x. ( 2 ^ H ) ) ) |
| 54 |
40
|
mullidd |
|- ( ph -> ( 1 x. ( 2 ^ H ) ) = ( 2 ^ H ) ) |
| 55 |
41 53 54
|
3eqtrd |
|- ( ph -> ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( -u 1 ^ N ) ) = ( 2 ^ H ) ) |
| 56 |
55
|
oveq1d |
|- ( ph -> ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( -u 1 ^ N ) ) mod P ) = ( ( 2 ^ H ) mod P ) ) |
| 57 |
39
|
mullidd |
|- ( ph -> ( 1 x. ( -u 1 ^ N ) ) = ( -u 1 ^ N ) ) |
| 58 |
57
|
oveq1d |
|- ( ph -> ( ( 1 x. ( -u 1 ^ N ) ) mod P ) = ( ( -u 1 ^ N ) mod P ) ) |
| 59 |
56 58
|
eqeq12d |
|- ( ph -> ( ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( -u 1 ^ N ) ) mod P ) = ( ( 1 x. ( -u 1 ^ N ) ) mod P ) <-> ( ( 2 ^ H ) mod P ) = ( ( -u 1 ^ N ) mod P ) ) ) |
| 60 |
2
|
oveq2i |
|- ( 2 ^ H ) = ( 2 ^ ( ( P - 1 ) / 2 ) ) |
| 61 |
60
|
oveq1i |
|- ( ( 2 ^ H ) mod P ) = ( ( 2 ^ ( ( P - 1 ) / 2 ) ) mod P ) |
| 62 |
61
|
eqeq1i |
|- ( ( ( 2 ^ H ) mod P ) = ( ( -u 1 ^ N ) mod P ) <-> ( ( 2 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( ( -u 1 ^ N ) mod P ) ) |
| 63 |
|
2z |
|- 2 e. ZZ |
| 64 |
|
lgsvalmod |
|- ( ( 2 e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( 2 /L P ) mod P ) = ( ( 2 ^ ( ( P - 1 ) / 2 ) ) mod P ) ) |
| 65 |
63 1 64
|
sylancr |
|- ( ph -> ( ( 2 /L P ) mod P ) = ( ( 2 ^ ( ( P - 1 ) / 2 ) ) mod P ) ) |
| 66 |
65
|
eqcomd |
|- ( ph -> ( ( 2 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( ( 2 /L P ) mod P ) ) |
| 67 |
66
|
eqeq1d |
|- ( ph -> ( ( ( 2 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( ( -u 1 ^ N ) mod P ) <-> ( ( 2 /L P ) mod P ) = ( ( -u 1 ^ N ) mod P ) ) ) |
| 68 |
1 4 2 5
|
gausslemma2dlem0i |
|- ( ph -> ( ( ( 2 /L P ) mod P ) = ( ( -u 1 ^ N ) mod P ) -> ( 2 /L P ) = ( -u 1 ^ N ) ) ) |
| 69 |
67 68
|
sylbid |
|- ( ph -> ( ( ( 2 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( ( -u 1 ^ N ) mod P ) -> ( 2 /L P ) = ( -u 1 ^ N ) ) ) |
| 70 |
62 69
|
biimtrid |
|- ( ph -> ( ( ( 2 ^ H ) mod P ) = ( ( -u 1 ^ N ) mod P ) -> ( 2 /L P ) = ( -u 1 ^ N ) ) ) |
| 71 |
59 70
|
sylbid |
|- ( ph -> ( ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( -u 1 ^ N ) ) mod P ) = ( ( 1 x. ( -u 1 ^ N ) ) mod P ) -> ( 2 /L P ) = ( -u 1 ^ N ) ) ) |
| 72 |
38 71
|
syld |
|- ( ph -> ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = ( 1 mod P ) -> ( 2 /L P ) = ( -u 1 ^ N ) ) ) |
| 73 |
15 72
|
sylbid |
|- ( ph -> ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = 1 -> ( 2 /L P ) = ( -u 1 ^ N ) ) ) |
| 74 |
6 73
|
mpd |
|- ( ph -> ( 2 /L P ) = ( -u 1 ^ N ) ) |