Step |
Hyp |
Ref |
Expression |
1 |
|
gausslemma2d.p |
|- ( ph -> P e. ( Prime \ { 2 } ) ) |
2 |
|
gausslemma2d.h |
|- H = ( ( P - 1 ) / 2 ) |
3 |
|
gausslemma2d.r |
|- R = ( x e. ( 1 ... H ) |-> if ( ( x x. 2 ) < ( P / 2 ) , ( x x. 2 ) , ( P - ( x x. 2 ) ) ) ) |
4 |
|
gausslemma2d.m |
|- M = ( |_ ` ( P / 4 ) ) |
5 |
|
gausslemma2d.n |
|- N = ( H - M ) |
6 |
1 2 3 4 5
|
gausslemma2dlem7 |
|- ( ph -> ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = 1 ) |
7 |
|
eldifi |
|- ( P e. ( Prime \ { 2 } ) -> P e. Prime ) |
8 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
9 |
8
|
nnred |
|- ( P e. Prime -> P e. RR ) |
10 |
|
prmgt1 |
|- ( P e. Prime -> 1 < P ) |
11 |
9 10
|
jca |
|- ( P e. Prime -> ( P e. RR /\ 1 < P ) ) |
12 |
1 7 11
|
3syl |
|- ( ph -> ( P e. RR /\ 1 < P ) ) |
13 |
|
1mod |
|- ( ( P e. RR /\ 1 < P ) -> ( 1 mod P ) = 1 ) |
14 |
12 13
|
syl |
|- ( ph -> ( 1 mod P ) = 1 ) |
15 |
14
|
eqcomd |
|- ( ph -> 1 = ( 1 mod P ) ) |
16 |
15
|
eqeq2d |
|- ( ph -> ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = 1 <-> ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = ( 1 mod P ) ) ) |
17 |
|
neg1z |
|- -u 1 e. ZZ |
18 |
1 4 2 5
|
gausslemma2dlem0h |
|- ( ph -> N e. NN0 ) |
19 |
|
zexpcl |
|- ( ( -u 1 e. ZZ /\ N e. NN0 ) -> ( -u 1 ^ N ) e. ZZ ) |
20 |
17 18 19
|
sylancr |
|- ( ph -> ( -u 1 ^ N ) e. ZZ ) |
21 |
|
2nn |
|- 2 e. NN |
22 |
21
|
a1i |
|- ( ph -> 2 e. NN ) |
23 |
1 2
|
gausslemma2dlem0b |
|- ( ph -> H e. NN ) |
24 |
23
|
nnnn0d |
|- ( ph -> H e. NN0 ) |
25 |
22 24
|
nnexpcld |
|- ( ph -> ( 2 ^ H ) e. NN ) |
26 |
25
|
nnzd |
|- ( ph -> ( 2 ^ H ) e. ZZ ) |
27 |
20 26
|
zmulcld |
|- ( ph -> ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) e. ZZ ) |
28 |
27
|
zred |
|- ( ph -> ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) e. RR ) |
29 |
|
1red |
|- ( ph -> 1 e. RR ) |
30 |
28 29
|
jca |
|- ( ph -> ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) e. RR /\ 1 e. RR ) ) |
31 |
30
|
adantr |
|- ( ( ph /\ ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = ( 1 mod P ) ) -> ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) e. RR /\ 1 e. RR ) ) |
32 |
1
|
gausslemma2dlem0a |
|- ( ph -> P e. NN ) |
33 |
32
|
nnrpd |
|- ( ph -> P e. RR+ ) |
34 |
20 33
|
jca |
|- ( ph -> ( ( -u 1 ^ N ) e. ZZ /\ P e. RR+ ) ) |
35 |
34
|
adantr |
|- ( ( ph /\ ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = ( 1 mod P ) ) -> ( ( -u 1 ^ N ) e. ZZ /\ P e. RR+ ) ) |
36 |
|
simpr |
|- ( ( ph /\ ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = ( 1 mod P ) ) -> ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = ( 1 mod P ) ) |
37 |
|
modmul1 |
|- ( ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) e. RR /\ 1 e. RR ) /\ ( ( -u 1 ^ N ) e. ZZ /\ P e. RR+ ) /\ ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = ( 1 mod P ) ) -> ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( -u 1 ^ N ) ) mod P ) = ( ( 1 x. ( -u 1 ^ N ) ) mod P ) ) |
38 |
31 35 36 37
|
syl3anc |
|- ( ( ph /\ ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = ( 1 mod P ) ) -> ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( -u 1 ^ N ) ) mod P ) = ( ( 1 x. ( -u 1 ^ N ) ) mod P ) ) |
39 |
38
|
ex |
|- ( ph -> ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = ( 1 mod P ) -> ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( -u 1 ^ N ) ) mod P ) = ( ( 1 x. ( -u 1 ^ N ) ) mod P ) ) ) |
40 |
20
|
zcnd |
|- ( ph -> ( -u 1 ^ N ) e. CC ) |
41 |
25
|
nncnd |
|- ( ph -> ( 2 ^ H ) e. CC ) |
42 |
40 41 40
|
mul32d |
|- ( ph -> ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( -u 1 ^ N ) ) = ( ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) x. ( 2 ^ H ) ) ) |
43 |
18
|
nn0cnd |
|- ( ph -> N e. CC ) |
44 |
43
|
2timesd |
|- ( ph -> ( 2 x. N ) = ( N + N ) ) |
45 |
44
|
eqcomd |
|- ( ph -> ( N + N ) = ( 2 x. N ) ) |
46 |
45
|
oveq2d |
|- ( ph -> ( -u 1 ^ ( N + N ) ) = ( -u 1 ^ ( 2 x. N ) ) ) |
47 |
|
neg1cn |
|- -u 1 e. CC |
48 |
47
|
a1i |
|- ( ph -> -u 1 e. CC ) |
49 |
48 18 18
|
expaddd |
|- ( ph -> ( -u 1 ^ ( N + N ) ) = ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) ) |
50 |
18
|
nn0zd |
|- ( ph -> N e. ZZ ) |
51 |
|
m1expeven |
|- ( N e. ZZ -> ( -u 1 ^ ( 2 x. N ) ) = 1 ) |
52 |
50 51
|
syl |
|- ( ph -> ( -u 1 ^ ( 2 x. N ) ) = 1 ) |
53 |
46 49 52
|
3eqtr3d |
|- ( ph -> ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) = 1 ) |
54 |
53
|
oveq1d |
|- ( ph -> ( ( ( -u 1 ^ N ) x. ( -u 1 ^ N ) ) x. ( 2 ^ H ) ) = ( 1 x. ( 2 ^ H ) ) ) |
55 |
41
|
mulid2d |
|- ( ph -> ( 1 x. ( 2 ^ H ) ) = ( 2 ^ H ) ) |
56 |
42 54 55
|
3eqtrd |
|- ( ph -> ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( -u 1 ^ N ) ) = ( 2 ^ H ) ) |
57 |
56
|
oveq1d |
|- ( ph -> ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( -u 1 ^ N ) ) mod P ) = ( ( 2 ^ H ) mod P ) ) |
58 |
40
|
mulid2d |
|- ( ph -> ( 1 x. ( -u 1 ^ N ) ) = ( -u 1 ^ N ) ) |
59 |
58
|
oveq1d |
|- ( ph -> ( ( 1 x. ( -u 1 ^ N ) ) mod P ) = ( ( -u 1 ^ N ) mod P ) ) |
60 |
57 59
|
eqeq12d |
|- ( ph -> ( ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( -u 1 ^ N ) ) mod P ) = ( ( 1 x. ( -u 1 ^ N ) ) mod P ) <-> ( ( 2 ^ H ) mod P ) = ( ( -u 1 ^ N ) mod P ) ) ) |
61 |
2
|
oveq2i |
|- ( 2 ^ H ) = ( 2 ^ ( ( P - 1 ) / 2 ) ) |
62 |
61
|
oveq1i |
|- ( ( 2 ^ H ) mod P ) = ( ( 2 ^ ( ( P - 1 ) / 2 ) ) mod P ) |
63 |
62
|
eqeq1i |
|- ( ( ( 2 ^ H ) mod P ) = ( ( -u 1 ^ N ) mod P ) <-> ( ( 2 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( ( -u 1 ^ N ) mod P ) ) |
64 |
|
2z |
|- 2 e. ZZ |
65 |
|
lgsvalmod |
|- ( ( 2 e. ZZ /\ P e. ( Prime \ { 2 } ) ) -> ( ( 2 /L P ) mod P ) = ( ( 2 ^ ( ( P - 1 ) / 2 ) ) mod P ) ) |
66 |
64 1 65
|
sylancr |
|- ( ph -> ( ( 2 /L P ) mod P ) = ( ( 2 ^ ( ( P - 1 ) / 2 ) ) mod P ) ) |
67 |
66
|
eqcomd |
|- ( ph -> ( ( 2 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( ( 2 /L P ) mod P ) ) |
68 |
67
|
eqeq1d |
|- ( ph -> ( ( ( 2 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( ( -u 1 ^ N ) mod P ) <-> ( ( 2 /L P ) mod P ) = ( ( -u 1 ^ N ) mod P ) ) ) |
69 |
1 4 2 5
|
gausslemma2dlem0i |
|- ( ph -> ( ( ( 2 /L P ) mod P ) = ( ( -u 1 ^ N ) mod P ) -> ( 2 /L P ) = ( -u 1 ^ N ) ) ) |
70 |
68 69
|
sylbid |
|- ( ph -> ( ( ( 2 ^ ( ( P - 1 ) / 2 ) ) mod P ) = ( ( -u 1 ^ N ) mod P ) -> ( 2 /L P ) = ( -u 1 ^ N ) ) ) |
71 |
63 70
|
syl5bi |
|- ( ph -> ( ( ( 2 ^ H ) mod P ) = ( ( -u 1 ^ N ) mod P ) -> ( 2 /L P ) = ( -u 1 ^ N ) ) ) |
72 |
60 71
|
sylbid |
|- ( ph -> ( ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( -u 1 ^ N ) ) mod P ) = ( ( 1 x. ( -u 1 ^ N ) ) mod P ) -> ( 2 /L P ) = ( -u 1 ^ N ) ) ) |
73 |
39 72
|
syld |
|- ( ph -> ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = ( 1 mod P ) -> ( 2 /L P ) = ( -u 1 ^ N ) ) ) |
74 |
16 73
|
sylbid |
|- ( ph -> ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = 1 -> ( 2 /L P ) = ( -u 1 ^ N ) ) ) |
75 |
6 74
|
mpd |
|- ( ph -> ( 2 /L P ) = ( -u 1 ^ N ) ) |