| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gausslemma2dlem0a.p |
|- ( ph -> P e. ( Prime \ { 2 } ) ) |
| 2 |
|
gausslemma2dlem0b.h |
|- H = ( ( P - 1 ) / 2 ) |
| 3 |
|
eldifi |
|- ( P e. ( Prime \ { 2 } ) -> P e. Prime ) |
| 4 |
|
prmuz2 |
|- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
| 5 |
3 4
|
syl |
|- ( P e. ( Prime \ { 2 } ) -> P e. ( ZZ>= ` 2 ) ) |
| 6 |
|
nnoddn2prm |
|- ( P e. ( Prime \ { 2 } ) -> ( P e. NN /\ -. 2 || P ) ) |
| 7 |
|
nnoddm1d2 |
|- ( P e. NN -> ( -. 2 || P <-> ( ( P + 1 ) / 2 ) e. NN ) ) |
| 8 |
7
|
biimpa |
|- ( ( P e. NN /\ -. 2 || P ) -> ( ( P + 1 ) / 2 ) e. NN ) |
| 9 |
8
|
nnnn0d |
|- ( ( P e. NN /\ -. 2 || P ) -> ( ( P + 1 ) / 2 ) e. NN0 ) |
| 10 |
6 9
|
syl |
|- ( P e. ( Prime \ { 2 } ) -> ( ( P + 1 ) / 2 ) e. NN0 ) |
| 11 |
5 10
|
jca |
|- ( P e. ( Prime \ { 2 } ) -> ( P e. ( ZZ>= ` 2 ) /\ ( ( P + 1 ) / 2 ) e. NN0 ) ) |
| 12 |
1 11
|
syl |
|- ( ph -> ( P e. ( ZZ>= ` 2 ) /\ ( ( P + 1 ) / 2 ) e. NN0 ) ) |
| 13 |
|
nno |
|- ( ( P e. ( ZZ>= ` 2 ) /\ ( ( P + 1 ) / 2 ) e. NN0 ) -> ( ( P - 1 ) / 2 ) e. NN ) |
| 14 |
12 13
|
syl |
|- ( ph -> ( ( P - 1 ) / 2 ) e. NN ) |
| 15 |
2 14
|
eqeltrid |
|- ( ph -> H e. NN ) |