Step |
Hyp |
Ref |
Expression |
1 |
|
gausslemma2dlem0.p |
|- ( ph -> P e. ( Prime \ { 2 } ) ) |
2 |
|
gausslemma2dlem0.m |
|- M = ( |_ ` ( P / 4 ) ) |
3 |
1
|
gausslemma2dlem0a |
|- ( ph -> P e. NN ) |
4 |
|
nnre |
|- ( P e. NN -> P e. RR ) |
5 |
|
4re |
|- 4 e. RR |
6 |
5
|
a1i |
|- ( P e. NN -> 4 e. RR ) |
7 |
|
4ne0 |
|- 4 =/= 0 |
8 |
7
|
a1i |
|- ( P e. NN -> 4 =/= 0 ) |
9 |
4 6 8
|
redivcld |
|- ( P e. NN -> ( P / 4 ) e. RR ) |
10 |
|
nnnn0 |
|- ( P e. NN -> P e. NN0 ) |
11 |
10
|
nn0ge0d |
|- ( P e. NN -> 0 <_ P ) |
12 |
|
4pos |
|- 0 < 4 |
13 |
5 12
|
pm3.2i |
|- ( 4 e. RR /\ 0 < 4 ) |
14 |
13
|
a1i |
|- ( P e. NN -> ( 4 e. RR /\ 0 < 4 ) ) |
15 |
|
divge0 |
|- ( ( ( P e. RR /\ 0 <_ P ) /\ ( 4 e. RR /\ 0 < 4 ) ) -> 0 <_ ( P / 4 ) ) |
16 |
4 11 14 15
|
syl21anc |
|- ( P e. NN -> 0 <_ ( P / 4 ) ) |
17 |
9 16
|
jca |
|- ( P e. NN -> ( ( P / 4 ) e. RR /\ 0 <_ ( P / 4 ) ) ) |
18 |
|
flge0nn0 |
|- ( ( ( P / 4 ) e. RR /\ 0 <_ ( P / 4 ) ) -> ( |_ ` ( P / 4 ) ) e. NN0 ) |
19 |
3 17 18
|
3syl |
|- ( ph -> ( |_ ` ( P / 4 ) ) e. NN0 ) |
20 |
2 19
|
eqeltrid |
|- ( ph -> M e. NN0 ) |