Description: Auxiliary lemma 7 for gausslemma2d . (Contributed by AV, 9-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gausslemma2dlem0.p | |- ( ph -> P e. ( Prime \ { 2 } ) ) |
|
gausslemma2dlem0.m | |- M = ( |_ ` ( P / 4 ) ) |
||
gausslemma2dlem0.h | |- H = ( ( P - 1 ) / 2 ) |
||
Assertion | gausslemma2dlem0g | |- ( ph -> M <_ H ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gausslemma2dlem0.p | |- ( ph -> P e. ( Prime \ { 2 } ) ) |
|
2 | gausslemma2dlem0.m | |- M = ( |_ ` ( P / 4 ) ) |
|
3 | gausslemma2dlem0.h | |- H = ( ( P - 1 ) / 2 ) |
|
4 | 1 | gausslemma2dlem0a | |- ( ph -> P e. NN ) |
5 | fldiv4lem1div2 | |- ( P e. NN -> ( |_ ` ( P / 4 ) ) <_ ( ( P - 1 ) / 2 ) ) |
|
6 | 4 5 | syl | |- ( ph -> ( |_ ` ( P / 4 ) ) <_ ( ( P - 1 ) / 2 ) ) |
7 | 6 2 3 | 3brtr4g | |- ( ph -> M <_ H ) |