| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gausslemma2d.p |  |-  ( ph -> P e. ( Prime \ { 2 } ) ) | 
						
							| 2 |  | gausslemma2d.h |  |-  H = ( ( P - 1 ) / 2 ) | 
						
							| 3 |  | gausslemma2d.r |  |-  R = ( x e. ( 1 ... H ) |-> if ( ( x x. 2 ) < ( P / 2 ) , ( x x. 2 ) , ( P - ( x x. 2 ) ) ) ) | 
						
							| 4 |  | gausslemma2d.m |  |-  M = ( |_ ` ( P / 4 ) ) | 
						
							| 5 |  | gausslemma2d.n |  |-  N = ( H - M ) | 
						
							| 6 | 1 2 3 4 | gausslemma2dlem5a |  |-  ( ph -> ( prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) mod P ) = ( prod_ k e. ( ( M + 1 ) ... H ) ( -u 1 x. ( k x. 2 ) ) mod P ) ) | 
						
							| 7 |  | fzfi |  |-  ( ( M + 1 ) ... H ) e. Fin | 
						
							| 8 | 7 | a1i |  |-  ( ph -> ( ( M + 1 ) ... H ) e. Fin ) | 
						
							| 9 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 10 | 9 | a1i |  |-  ( ( ph /\ k e. ( ( M + 1 ) ... H ) ) -> -u 1 e. CC ) | 
						
							| 11 |  | elfzelz |  |-  ( k e. ( ( M + 1 ) ... H ) -> k e. ZZ ) | 
						
							| 12 |  | 2z |  |-  2 e. ZZ | 
						
							| 13 | 12 | a1i |  |-  ( k e. ( ( M + 1 ) ... H ) -> 2 e. ZZ ) | 
						
							| 14 | 11 13 | zmulcld |  |-  ( k e. ( ( M + 1 ) ... H ) -> ( k x. 2 ) e. ZZ ) | 
						
							| 15 | 14 | zcnd |  |-  ( k e. ( ( M + 1 ) ... H ) -> ( k x. 2 ) e. CC ) | 
						
							| 16 | 15 | adantl |  |-  ( ( ph /\ k e. ( ( M + 1 ) ... H ) ) -> ( k x. 2 ) e. CC ) | 
						
							| 17 | 8 10 16 | fprodmul |  |-  ( ph -> prod_ k e. ( ( M + 1 ) ... H ) ( -u 1 x. ( k x. 2 ) ) = ( prod_ k e. ( ( M + 1 ) ... H ) -u 1 x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) ) | 
						
							| 18 | 7 9 | pm3.2i |  |-  ( ( ( M + 1 ) ... H ) e. Fin /\ -u 1 e. CC ) | 
						
							| 19 |  | fprodconst |  |-  ( ( ( ( M + 1 ) ... H ) e. Fin /\ -u 1 e. CC ) -> prod_ k e. ( ( M + 1 ) ... H ) -u 1 = ( -u 1 ^ ( # ` ( ( M + 1 ) ... H ) ) ) ) | 
						
							| 20 | 18 19 | mp1i |  |-  ( ph -> prod_ k e. ( ( M + 1 ) ... H ) -u 1 = ( -u 1 ^ ( # ` ( ( M + 1 ) ... H ) ) ) ) | 
						
							| 21 |  | nnoddn2prm |  |-  ( P e. ( Prime \ { 2 } ) -> ( P e. NN /\ -. 2 || P ) ) | 
						
							| 22 |  | nnre |  |-  ( P e. NN -> P e. RR ) | 
						
							| 23 | 22 | adantr |  |-  ( ( P e. NN /\ -. 2 || P ) -> P e. RR ) | 
						
							| 24 | 1 21 23 | 3syl |  |-  ( ph -> P e. RR ) | 
						
							| 25 |  | 4re |  |-  4 e. RR | 
						
							| 26 | 25 | a1i |  |-  ( ph -> 4 e. RR ) | 
						
							| 27 |  | 4ne0 |  |-  4 =/= 0 | 
						
							| 28 | 27 | a1i |  |-  ( ph -> 4 =/= 0 ) | 
						
							| 29 | 24 26 28 | redivcld |  |-  ( ph -> ( P / 4 ) e. RR ) | 
						
							| 30 | 29 | flcld |  |-  ( ph -> ( |_ ` ( P / 4 ) ) e. ZZ ) | 
						
							| 31 | 4 30 | eqeltrid |  |-  ( ph -> M e. ZZ ) | 
						
							| 32 | 31 | peano2zd |  |-  ( ph -> ( M + 1 ) e. ZZ ) | 
						
							| 33 |  | nnz |  |-  ( P e. NN -> P e. ZZ ) | 
						
							| 34 |  | oddm1d2 |  |-  ( P e. ZZ -> ( -. 2 || P <-> ( ( P - 1 ) / 2 ) e. ZZ ) ) | 
						
							| 35 | 33 34 | syl |  |-  ( P e. NN -> ( -. 2 || P <-> ( ( P - 1 ) / 2 ) e. ZZ ) ) | 
						
							| 36 | 35 | biimpa |  |-  ( ( P e. NN /\ -. 2 || P ) -> ( ( P - 1 ) / 2 ) e. ZZ ) | 
						
							| 37 | 1 21 36 | 3syl |  |-  ( ph -> ( ( P - 1 ) / 2 ) e. ZZ ) | 
						
							| 38 | 2 37 | eqeltrid |  |-  ( ph -> H e. ZZ ) | 
						
							| 39 | 1 4 2 | gausslemma2dlem0f |  |-  ( ph -> ( M + 1 ) <_ H ) | 
						
							| 40 |  | eluz2 |  |-  ( H e. ( ZZ>= ` ( M + 1 ) ) <-> ( ( M + 1 ) e. ZZ /\ H e. ZZ /\ ( M + 1 ) <_ H ) ) | 
						
							| 41 | 32 38 39 40 | syl3anbrc |  |-  ( ph -> H e. ( ZZ>= ` ( M + 1 ) ) ) | 
						
							| 42 |  | hashfz |  |-  ( H e. ( ZZ>= ` ( M + 1 ) ) -> ( # ` ( ( M + 1 ) ... H ) ) = ( ( H - ( M + 1 ) ) + 1 ) ) | 
						
							| 43 | 41 42 | syl |  |-  ( ph -> ( # ` ( ( M + 1 ) ... H ) ) = ( ( H - ( M + 1 ) ) + 1 ) ) | 
						
							| 44 | 38 | zcnd |  |-  ( ph -> H e. CC ) | 
						
							| 45 | 31 | zcnd |  |-  ( ph -> M e. CC ) | 
						
							| 46 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 47 | 44 45 46 | nppcan2d |  |-  ( ph -> ( ( H - ( M + 1 ) ) + 1 ) = ( H - M ) ) | 
						
							| 48 | 47 5 | eqtr4di |  |-  ( ph -> ( ( H - ( M + 1 ) ) + 1 ) = N ) | 
						
							| 49 | 43 48 | eqtrd |  |-  ( ph -> ( # ` ( ( M + 1 ) ... H ) ) = N ) | 
						
							| 50 | 49 | oveq2d |  |-  ( ph -> ( -u 1 ^ ( # ` ( ( M + 1 ) ... H ) ) ) = ( -u 1 ^ N ) ) | 
						
							| 51 | 20 50 | eqtrd |  |-  ( ph -> prod_ k e. ( ( M + 1 ) ... H ) -u 1 = ( -u 1 ^ N ) ) | 
						
							| 52 | 51 | oveq1d |  |-  ( ph -> ( prod_ k e. ( ( M + 1 ) ... H ) -u 1 x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) = ( ( -u 1 ^ N ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) ) | 
						
							| 53 | 17 52 | eqtrd |  |-  ( ph -> prod_ k e. ( ( M + 1 ) ... H ) ( -u 1 x. ( k x. 2 ) ) = ( ( -u 1 ^ N ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) ) | 
						
							| 54 | 53 | oveq1d |  |-  ( ph -> ( prod_ k e. ( ( M + 1 ) ... H ) ( -u 1 x. ( k x. 2 ) ) mod P ) = ( ( ( -u 1 ^ N ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) mod P ) ) | 
						
							| 55 | 6 54 | eqtrd |  |-  ( ph -> ( prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) mod P ) = ( ( ( -u 1 ^ N ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) mod P ) ) |