| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gausslemma2d.p |
|- ( ph -> P e. ( Prime \ { 2 } ) ) |
| 2 |
|
gausslemma2d.h |
|- H = ( ( P - 1 ) / 2 ) |
| 3 |
|
gausslemma2d.r |
|- R = ( x e. ( 1 ... H ) |-> if ( ( x x. 2 ) < ( P / 2 ) , ( x x. 2 ) , ( P - ( x x. 2 ) ) ) ) |
| 4 |
|
gausslemma2d.m |
|- M = ( |_ ` ( P / 4 ) ) |
| 5 |
|
gausslemma2d.n |
|- N = ( H - M ) |
| 6 |
1 2 3 4
|
gausslemma2dlem4 |
|- ( ph -> ( ! ` H ) = ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) ) ) |
| 7 |
6
|
oveq1d |
|- ( ph -> ( ( ! ` H ) mod P ) = ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) ) mod P ) ) |
| 8 |
|
fzfid |
|- ( ph -> ( 1 ... M ) e. Fin ) |
| 9 |
1 2 3 4
|
gausslemma2dlem2 |
|- ( ph -> A. k e. ( 1 ... M ) ( R ` k ) = ( k x. 2 ) ) |
| 10 |
9
|
adantr |
|- ( ( ph /\ k e. ( 1 ... M ) ) -> A. k e. ( 1 ... M ) ( R ` k ) = ( k x. 2 ) ) |
| 11 |
|
rspa |
|- ( ( A. k e. ( 1 ... M ) ( R ` k ) = ( k x. 2 ) /\ k e. ( 1 ... M ) ) -> ( R ` k ) = ( k x. 2 ) ) |
| 12 |
11
|
expcom |
|- ( k e. ( 1 ... M ) -> ( A. k e. ( 1 ... M ) ( R ` k ) = ( k x. 2 ) -> ( R ` k ) = ( k x. 2 ) ) ) |
| 13 |
12
|
adantl |
|- ( ( ph /\ k e. ( 1 ... M ) ) -> ( A. k e. ( 1 ... M ) ( R ` k ) = ( k x. 2 ) -> ( R ` k ) = ( k x. 2 ) ) ) |
| 14 |
|
elfzelz |
|- ( k e. ( 1 ... M ) -> k e. ZZ ) |
| 15 |
|
2z |
|- 2 e. ZZ |
| 16 |
15
|
a1i |
|- ( k e. ( 1 ... M ) -> 2 e. ZZ ) |
| 17 |
14 16
|
zmulcld |
|- ( k e. ( 1 ... M ) -> ( k x. 2 ) e. ZZ ) |
| 18 |
17
|
adantl |
|- ( ( ph /\ k e. ( 1 ... M ) ) -> ( k x. 2 ) e. ZZ ) |
| 19 |
|
eleq1 |
|- ( ( R ` k ) = ( k x. 2 ) -> ( ( R ` k ) e. ZZ <-> ( k x. 2 ) e. ZZ ) ) |
| 20 |
18 19
|
syl5ibrcom |
|- ( ( ph /\ k e. ( 1 ... M ) ) -> ( ( R ` k ) = ( k x. 2 ) -> ( R ` k ) e. ZZ ) ) |
| 21 |
13 20
|
syld |
|- ( ( ph /\ k e. ( 1 ... M ) ) -> ( A. k e. ( 1 ... M ) ( R ` k ) = ( k x. 2 ) -> ( R ` k ) e. ZZ ) ) |
| 22 |
10 21
|
mpd |
|- ( ( ph /\ k e. ( 1 ... M ) ) -> ( R ` k ) e. ZZ ) |
| 23 |
8 22
|
fprodzcl |
|- ( ph -> prod_ k e. ( 1 ... M ) ( R ` k ) e. ZZ ) |
| 24 |
|
fzfid |
|- ( ph -> ( ( M + 1 ) ... H ) e. Fin ) |
| 25 |
1 2 3 4
|
gausslemma2dlem3 |
|- ( ph -> A. k e. ( ( M + 1 ) ... H ) ( R ` k ) = ( P - ( k x. 2 ) ) ) |
| 26 |
25
|
adantr |
|- ( ( ph /\ k e. ( ( M + 1 ) ... H ) ) -> A. k e. ( ( M + 1 ) ... H ) ( R ` k ) = ( P - ( k x. 2 ) ) ) |
| 27 |
|
rspa |
|- ( ( A. k e. ( ( M + 1 ) ... H ) ( R ` k ) = ( P - ( k x. 2 ) ) /\ k e. ( ( M + 1 ) ... H ) ) -> ( R ` k ) = ( P - ( k x. 2 ) ) ) |
| 28 |
27
|
expcom |
|- ( k e. ( ( M + 1 ) ... H ) -> ( A. k e. ( ( M + 1 ) ... H ) ( R ` k ) = ( P - ( k x. 2 ) ) -> ( R ` k ) = ( P - ( k x. 2 ) ) ) ) |
| 29 |
28
|
adantl |
|- ( ( ph /\ k e. ( ( M + 1 ) ... H ) ) -> ( A. k e. ( ( M + 1 ) ... H ) ( R ` k ) = ( P - ( k x. 2 ) ) -> ( R ` k ) = ( P - ( k x. 2 ) ) ) ) |
| 30 |
1
|
gausslemma2dlem0a |
|- ( ph -> P e. NN ) |
| 31 |
30
|
nnzd |
|- ( ph -> P e. ZZ ) |
| 32 |
|
elfzelz |
|- ( k e. ( ( M + 1 ) ... H ) -> k e. ZZ ) |
| 33 |
15
|
a1i |
|- ( k e. ( ( M + 1 ) ... H ) -> 2 e. ZZ ) |
| 34 |
32 33
|
zmulcld |
|- ( k e. ( ( M + 1 ) ... H ) -> ( k x. 2 ) e. ZZ ) |
| 35 |
|
zsubcl |
|- ( ( P e. ZZ /\ ( k x. 2 ) e. ZZ ) -> ( P - ( k x. 2 ) ) e. ZZ ) |
| 36 |
31 34 35
|
syl2an |
|- ( ( ph /\ k e. ( ( M + 1 ) ... H ) ) -> ( P - ( k x. 2 ) ) e. ZZ ) |
| 37 |
|
eleq1 |
|- ( ( R ` k ) = ( P - ( k x. 2 ) ) -> ( ( R ` k ) e. ZZ <-> ( P - ( k x. 2 ) ) e. ZZ ) ) |
| 38 |
36 37
|
syl5ibrcom |
|- ( ( ph /\ k e. ( ( M + 1 ) ... H ) ) -> ( ( R ` k ) = ( P - ( k x. 2 ) ) -> ( R ` k ) e. ZZ ) ) |
| 39 |
29 38
|
syld |
|- ( ( ph /\ k e. ( ( M + 1 ) ... H ) ) -> ( A. k e. ( ( M + 1 ) ... H ) ( R ` k ) = ( P - ( k x. 2 ) ) -> ( R ` k ) e. ZZ ) ) |
| 40 |
26 39
|
mpd |
|- ( ( ph /\ k e. ( ( M + 1 ) ... H ) ) -> ( R ` k ) e. ZZ ) |
| 41 |
24 40
|
fprodzcl |
|- ( ph -> prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) e. ZZ ) |
| 42 |
41
|
zred |
|- ( ph -> prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) e. RR ) |
| 43 |
|
nnoddn2prm |
|- ( P e. ( Prime \ { 2 } ) -> ( P e. NN /\ -. 2 || P ) ) |
| 44 |
|
nnrp |
|- ( P e. NN -> P e. RR+ ) |
| 45 |
44
|
adantr |
|- ( ( P e. NN /\ -. 2 || P ) -> P e. RR+ ) |
| 46 |
1 43 45
|
3syl |
|- ( ph -> P e. RR+ ) |
| 47 |
|
modmulmodr |
|- ( ( prod_ k e. ( 1 ... M ) ( R ` k ) e. ZZ /\ prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) e. RR /\ P e. RR+ ) -> ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) mod P ) ) mod P ) = ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) ) mod P ) ) |
| 48 |
47
|
eqcomd |
|- ( ( prod_ k e. ( 1 ... M ) ( R ` k ) e. ZZ /\ prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) e. RR /\ P e. RR+ ) -> ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) ) mod P ) = ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) mod P ) ) mod P ) ) |
| 49 |
23 42 46 48
|
syl3anc |
|- ( ph -> ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) ) mod P ) = ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) mod P ) ) mod P ) ) |
| 50 |
1 2 3 4 5
|
gausslemma2dlem5 |
|- ( ph -> ( prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) mod P ) = ( ( ( -u 1 ^ N ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) mod P ) ) |
| 51 |
50
|
oveq2d |
|- ( ph -> ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) mod P ) ) = ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( ( ( -u 1 ^ N ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) mod P ) ) ) |
| 52 |
51
|
oveq1d |
|- ( ph -> ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) mod P ) ) mod P ) = ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( ( ( -u 1 ^ N ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) mod P ) ) mod P ) ) |
| 53 |
|
neg1rr |
|- -u 1 e. RR |
| 54 |
53
|
a1i |
|- ( ph -> -u 1 e. RR ) |
| 55 |
1 4 2 5
|
gausslemma2dlem0h |
|- ( ph -> N e. NN0 ) |
| 56 |
54 55
|
reexpcld |
|- ( ph -> ( -u 1 ^ N ) e. RR ) |
| 57 |
32
|
adantl |
|- ( ( ph /\ k e. ( ( M + 1 ) ... H ) ) -> k e. ZZ ) |
| 58 |
15
|
a1i |
|- ( ( ph /\ k e. ( ( M + 1 ) ... H ) ) -> 2 e. ZZ ) |
| 59 |
57 58
|
zmulcld |
|- ( ( ph /\ k e. ( ( M + 1 ) ... H ) ) -> ( k x. 2 ) e. ZZ ) |
| 60 |
24 59
|
fprodzcl |
|- ( ph -> prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) e. ZZ ) |
| 61 |
60
|
zred |
|- ( ph -> prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) e. RR ) |
| 62 |
56 61
|
remulcld |
|- ( ph -> ( ( -u 1 ^ N ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) e. RR ) |
| 63 |
|
modmulmodr |
|- ( ( prod_ k e. ( 1 ... M ) ( R ` k ) e. ZZ /\ ( ( -u 1 ^ N ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) e. RR /\ P e. RR+ ) -> ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( ( ( -u 1 ^ N ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) mod P ) ) mod P ) = ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( ( -u 1 ^ N ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) ) mod P ) ) |
| 64 |
23 62 46 63
|
syl3anc |
|- ( ph -> ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( ( ( -u 1 ^ N ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) mod P ) ) mod P ) = ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( ( -u 1 ^ N ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) ) mod P ) ) |
| 65 |
9
|
prodeq2d |
|- ( ph -> prod_ k e. ( 1 ... M ) ( R ` k ) = prod_ k e. ( 1 ... M ) ( k x. 2 ) ) |
| 66 |
65
|
oveq1d |
|- ( ph -> ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) = ( prod_ k e. ( 1 ... M ) ( k x. 2 ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) ) |
| 67 |
|
fzfid |
|- ( ph -> ( 1 ... H ) e. Fin ) |
| 68 |
|
elfzelz |
|- ( k e. ( 1 ... H ) -> k e. ZZ ) |
| 69 |
68
|
zcnd |
|- ( k e. ( 1 ... H ) -> k e. CC ) |
| 70 |
69
|
adantl |
|- ( ( ph /\ k e. ( 1 ... H ) ) -> k e. CC ) |
| 71 |
|
2cn |
|- 2 e. CC |
| 72 |
71
|
a1i |
|- ( ( ph /\ k e. ( 1 ... H ) ) -> 2 e. CC ) |
| 73 |
67 70 72
|
fprodmul |
|- ( ph -> prod_ k e. ( 1 ... H ) ( k x. 2 ) = ( prod_ k e. ( 1 ... H ) k x. prod_ k e. ( 1 ... H ) 2 ) ) |
| 74 |
1 4
|
gausslemma2dlem0d |
|- ( ph -> M e. NN0 ) |
| 75 |
74
|
nn0red |
|- ( ph -> M e. RR ) |
| 76 |
75
|
ltp1d |
|- ( ph -> M < ( M + 1 ) ) |
| 77 |
|
fzdisj |
|- ( M < ( M + 1 ) -> ( ( 1 ... M ) i^i ( ( M + 1 ) ... H ) ) = (/) ) |
| 78 |
76 77
|
syl |
|- ( ph -> ( ( 1 ... M ) i^i ( ( M + 1 ) ... H ) ) = (/) ) |
| 79 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 80 |
|
nn0pzuz |
|- ( ( M e. NN0 /\ 1 e. ZZ ) -> ( M + 1 ) e. ( ZZ>= ` 1 ) ) |
| 81 |
74 79 80
|
syl2anc |
|- ( ph -> ( M + 1 ) e. ( ZZ>= ` 1 ) ) |
| 82 |
74
|
nn0zd |
|- ( ph -> M e. ZZ ) |
| 83 |
1 2
|
gausslemma2dlem0b |
|- ( ph -> H e. NN ) |
| 84 |
83
|
nnzd |
|- ( ph -> H e. ZZ ) |
| 85 |
1 4 2
|
gausslemma2dlem0g |
|- ( ph -> M <_ H ) |
| 86 |
|
eluz2 |
|- ( H e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ H e. ZZ /\ M <_ H ) ) |
| 87 |
82 84 85 86
|
syl3anbrc |
|- ( ph -> H e. ( ZZ>= ` M ) ) |
| 88 |
|
fzsplit2 |
|- ( ( ( M + 1 ) e. ( ZZ>= ` 1 ) /\ H e. ( ZZ>= ` M ) ) -> ( 1 ... H ) = ( ( 1 ... M ) u. ( ( M + 1 ) ... H ) ) ) |
| 89 |
81 87 88
|
syl2anc |
|- ( ph -> ( 1 ... H ) = ( ( 1 ... M ) u. ( ( M + 1 ) ... H ) ) ) |
| 90 |
15
|
a1i |
|- ( k e. ( 1 ... H ) -> 2 e. ZZ ) |
| 91 |
68 90
|
zmulcld |
|- ( k e. ( 1 ... H ) -> ( k x. 2 ) e. ZZ ) |
| 92 |
91
|
adantl |
|- ( ( ph /\ k e. ( 1 ... H ) ) -> ( k x. 2 ) e. ZZ ) |
| 93 |
92
|
zcnd |
|- ( ( ph /\ k e. ( 1 ... H ) ) -> ( k x. 2 ) e. CC ) |
| 94 |
78 89 67 93
|
fprodsplit |
|- ( ph -> prod_ k e. ( 1 ... H ) ( k x. 2 ) = ( prod_ k e. ( 1 ... M ) ( k x. 2 ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) ) |
| 95 |
|
nnnn0 |
|- ( P e. NN -> P e. NN0 ) |
| 96 |
95
|
anim1i |
|- ( ( P e. NN /\ -. 2 || P ) -> ( P e. NN0 /\ -. 2 || P ) ) |
| 97 |
43 96
|
syl |
|- ( P e. ( Prime \ { 2 } ) -> ( P e. NN0 /\ -. 2 || P ) ) |
| 98 |
|
nn0oddm1d2 |
|- ( P e. NN0 -> ( -. 2 || P <-> ( ( P - 1 ) / 2 ) e. NN0 ) ) |
| 99 |
98
|
biimpa |
|- ( ( P e. NN0 /\ -. 2 || P ) -> ( ( P - 1 ) / 2 ) e. NN0 ) |
| 100 |
2 99
|
eqeltrid |
|- ( ( P e. NN0 /\ -. 2 || P ) -> H e. NN0 ) |
| 101 |
1 97 100
|
3syl |
|- ( ph -> H e. NN0 ) |
| 102 |
|
fprodfac |
|- ( H e. NN0 -> ( ! ` H ) = prod_ k e. ( 1 ... H ) k ) |
| 103 |
101 102
|
syl |
|- ( ph -> ( ! ` H ) = prod_ k e. ( 1 ... H ) k ) |
| 104 |
103
|
eqcomd |
|- ( ph -> prod_ k e. ( 1 ... H ) k = ( ! ` H ) ) |
| 105 |
|
fzfi |
|- ( 1 ... H ) e. Fin |
| 106 |
105 71
|
pm3.2i |
|- ( ( 1 ... H ) e. Fin /\ 2 e. CC ) |
| 107 |
|
fprodconst |
|- ( ( ( 1 ... H ) e. Fin /\ 2 e. CC ) -> prod_ k e. ( 1 ... H ) 2 = ( 2 ^ ( # ` ( 1 ... H ) ) ) ) |
| 108 |
106 107
|
mp1i |
|- ( ph -> prod_ k e. ( 1 ... H ) 2 = ( 2 ^ ( # ` ( 1 ... H ) ) ) ) |
| 109 |
104 108
|
oveq12d |
|- ( ph -> ( prod_ k e. ( 1 ... H ) k x. prod_ k e. ( 1 ... H ) 2 ) = ( ( ! ` H ) x. ( 2 ^ ( # ` ( 1 ... H ) ) ) ) ) |
| 110 |
|
hashfz1 |
|- ( H e. NN0 -> ( # ` ( 1 ... H ) ) = H ) |
| 111 |
101 110
|
syl |
|- ( ph -> ( # ` ( 1 ... H ) ) = H ) |
| 112 |
111
|
oveq2d |
|- ( ph -> ( 2 ^ ( # ` ( 1 ... H ) ) ) = ( 2 ^ H ) ) |
| 113 |
112
|
oveq2d |
|- ( ph -> ( ( ! ` H ) x. ( 2 ^ ( # ` ( 1 ... H ) ) ) ) = ( ( ! ` H ) x. ( 2 ^ H ) ) ) |
| 114 |
101
|
faccld |
|- ( ph -> ( ! ` H ) e. NN ) |
| 115 |
114
|
nncnd |
|- ( ph -> ( ! ` H ) e. CC ) |
| 116 |
|
2nn0 |
|- 2 e. NN0 |
| 117 |
|
nn0expcl |
|- ( ( 2 e. NN0 /\ H e. NN0 ) -> ( 2 ^ H ) e. NN0 ) |
| 118 |
117
|
nn0cnd |
|- ( ( 2 e. NN0 /\ H e. NN0 ) -> ( 2 ^ H ) e. CC ) |
| 119 |
116 101 118
|
sylancr |
|- ( ph -> ( 2 ^ H ) e. CC ) |
| 120 |
115 119
|
mulcomd |
|- ( ph -> ( ( ! ` H ) x. ( 2 ^ H ) ) = ( ( 2 ^ H ) x. ( ! ` H ) ) ) |
| 121 |
109 113 120
|
3eqtrd |
|- ( ph -> ( prod_ k e. ( 1 ... H ) k x. prod_ k e. ( 1 ... H ) 2 ) = ( ( 2 ^ H ) x. ( ! ` H ) ) ) |
| 122 |
73 94 121
|
3eqtr3d |
|- ( ph -> ( prod_ k e. ( 1 ... M ) ( k x. 2 ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) = ( ( 2 ^ H ) x. ( ! ` H ) ) ) |
| 123 |
66 122
|
eqtrd |
|- ( ph -> ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) = ( ( 2 ^ H ) x. ( ! ` H ) ) ) |
| 124 |
123
|
oveq2d |
|- ( ph -> ( ( -u 1 ^ N ) x. ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) ) = ( ( -u 1 ^ N ) x. ( ( 2 ^ H ) x. ( ! ` H ) ) ) ) |
| 125 |
23
|
zcnd |
|- ( ph -> prod_ k e. ( 1 ... M ) ( R ` k ) e. CC ) |
| 126 |
56
|
recnd |
|- ( ph -> ( -u 1 ^ N ) e. CC ) |
| 127 |
60
|
zcnd |
|- ( ph -> prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) e. CC ) |
| 128 |
125 126 127
|
mul12d |
|- ( ph -> ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( ( -u 1 ^ N ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) ) = ( ( -u 1 ^ N ) x. ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) ) ) |
| 129 |
126 119 115
|
mulassd |
|- ( ph -> ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( ! ` H ) ) = ( ( -u 1 ^ N ) x. ( ( 2 ^ H ) x. ( ! ` H ) ) ) ) |
| 130 |
124 128 129
|
3eqtr4d |
|- ( ph -> ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( ( -u 1 ^ N ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) ) = ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( ! ` H ) ) ) |
| 131 |
130
|
oveq1d |
|- ( ph -> ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( ( -u 1 ^ N ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) ) mod P ) = ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( ! ` H ) ) mod P ) ) |
| 132 |
52 64 131
|
3eqtrd |
|- ( ph -> ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) mod P ) ) mod P ) = ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( ! ` H ) ) mod P ) ) |
| 133 |
7 49 132
|
3eqtrd |
|- ( ph -> ( ( ! ` H ) mod P ) = ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( ! ` H ) ) mod P ) ) |