| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gausslemma2d.p |  |-  ( ph -> P e. ( Prime \ { 2 } ) ) | 
						
							| 2 |  | gausslemma2d.h |  |-  H = ( ( P - 1 ) / 2 ) | 
						
							| 3 |  | gausslemma2d.r |  |-  R = ( x e. ( 1 ... H ) |-> if ( ( x x. 2 ) < ( P / 2 ) , ( x x. 2 ) , ( P - ( x x. 2 ) ) ) ) | 
						
							| 4 |  | gausslemma2d.m |  |-  M = ( |_ ` ( P / 4 ) ) | 
						
							| 5 |  | gausslemma2d.n |  |-  N = ( H - M ) | 
						
							| 6 | 1 2 3 4 | gausslemma2dlem4 |  |-  ( ph -> ( ! ` H ) = ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) ) ) | 
						
							| 7 | 6 | oveq1d |  |-  ( ph -> ( ( ! ` H ) mod P ) = ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) ) mod P ) ) | 
						
							| 8 |  | fzfid |  |-  ( ph -> ( 1 ... M ) e. Fin ) | 
						
							| 9 | 1 2 3 4 | gausslemma2dlem2 |  |-  ( ph -> A. k e. ( 1 ... M ) ( R ` k ) = ( k x. 2 ) ) | 
						
							| 10 | 9 | adantr |  |-  ( ( ph /\ k e. ( 1 ... M ) ) -> A. k e. ( 1 ... M ) ( R ` k ) = ( k x. 2 ) ) | 
						
							| 11 |  | rspa |  |-  ( ( A. k e. ( 1 ... M ) ( R ` k ) = ( k x. 2 ) /\ k e. ( 1 ... M ) ) -> ( R ` k ) = ( k x. 2 ) ) | 
						
							| 12 | 11 | expcom |  |-  ( k e. ( 1 ... M ) -> ( A. k e. ( 1 ... M ) ( R ` k ) = ( k x. 2 ) -> ( R ` k ) = ( k x. 2 ) ) ) | 
						
							| 13 | 12 | adantl |  |-  ( ( ph /\ k e. ( 1 ... M ) ) -> ( A. k e. ( 1 ... M ) ( R ` k ) = ( k x. 2 ) -> ( R ` k ) = ( k x. 2 ) ) ) | 
						
							| 14 |  | elfzelz |  |-  ( k e. ( 1 ... M ) -> k e. ZZ ) | 
						
							| 15 |  | 2z |  |-  2 e. ZZ | 
						
							| 16 | 15 | a1i |  |-  ( k e. ( 1 ... M ) -> 2 e. ZZ ) | 
						
							| 17 | 14 16 | zmulcld |  |-  ( k e. ( 1 ... M ) -> ( k x. 2 ) e. ZZ ) | 
						
							| 18 | 17 | adantl |  |-  ( ( ph /\ k e. ( 1 ... M ) ) -> ( k x. 2 ) e. ZZ ) | 
						
							| 19 |  | eleq1 |  |-  ( ( R ` k ) = ( k x. 2 ) -> ( ( R ` k ) e. ZZ <-> ( k x. 2 ) e. ZZ ) ) | 
						
							| 20 | 18 19 | syl5ibrcom |  |-  ( ( ph /\ k e. ( 1 ... M ) ) -> ( ( R ` k ) = ( k x. 2 ) -> ( R ` k ) e. ZZ ) ) | 
						
							| 21 | 13 20 | syld |  |-  ( ( ph /\ k e. ( 1 ... M ) ) -> ( A. k e. ( 1 ... M ) ( R ` k ) = ( k x. 2 ) -> ( R ` k ) e. ZZ ) ) | 
						
							| 22 | 10 21 | mpd |  |-  ( ( ph /\ k e. ( 1 ... M ) ) -> ( R ` k ) e. ZZ ) | 
						
							| 23 | 8 22 | fprodzcl |  |-  ( ph -> prod_ k e. ( 1 ... M ) ( R ` k ) e. ZZ ) | 
						
							| 24 |  | fzfid |  |-  ( ph -> ( ( M + 1 ) ... H ) e. Fin ) | 
						
							| 25 | 1 2 3 4 | gausslemma2dlem3 |  |-  ( ph -> A. k e. ( ( M + 1 ) ... H ) ( R ` k ) = ( P - ( k x. 2 ) ) ) | 
						
							| 26 | 25 | adantr |  |-  ( ( ph /\ k e. ( ( M + 1 ) ... H ) ) -> A. k e. ( ( M + 1 ) ... H ) ( R ` k ) = ( P - ( k x. 2 ) ) ) | 
						
							| 27 |  | rspa |  |-  ( ( A. k e. ( ( M + 1 ) ... H ) ( R ` k ) = ( P - ( k x. 2 ) ) /\ k e. ( ( M + 1 ) ... H ) ) -> ( R ` k ) = ( P - ( k x. 2 ) ) ) | 
						
							| 28 | 27 | expcom |  |-  ( k e. ( ( M + 1 ) ... H ) -> ( A. k e. ( ( M + 1 ) ... H ) ( R ` k ) = ( P - ( k x. 2 ) ) -> ( R ` k ) = ( P - ( k x. 2 ) ) ) ) | 
						
							| 29 | 28 | adantl |  |-  ( ( ph /\ k e. ( ( M + 1 ) ... H ) ) -> ( A. k e. ( ( M + 1 ) ... H ) ( R ` k ) = ( P - ( k x. 2 ) ) -> ( R ` k ) = ( P - ( k x. 2 ) ) ) ) | 
						
							| 30 | 1 | gausslemma2dlem0a |  |-  ( ph -> P e. NN ) | 
						
							| 31 | 30 | nnzd |  |-  ( ph -> P e. ZZ ) | 
						
							| 32 |  | elfzelz |  |-  ( k e. ( ( M + 1 ) ... H ) -> k e. ZZ ) | 
						
							| 33 | 15 | a1i |  |-  ( k e. ( ( M + 1 ) ... H ) -> 2 e. ZZ ) | 
						
							| 34 | 32 33 | zmulcld |  |-  ( k e. ( ( M + 1 ) ... H ) -> ( k x. 2 ) e. ZZ ) | 
						
							| 35 |  | zsubcl |  |-  ( ( P e. ZZ /\ ( k x. 2 ) e. ZZ ) -> ( P - ( k x. 2 ) ) e. ZZ ) | 
						
							| 36 | 31 34 35 | syl2an |  |-  ( ( ph /\ k e. ( ( M + 1 ) ... H ) ) -> ( P - ( k x. 2 ) ) e. ZZ ) | 
						
							| 37 |  | eleq1 |  |-  ( ( R ` k ) = ( P - ( k x. 2 ) ) -> ( ( R ` k ) e. ZZ <-> ( P - ( k x. 2 ) ) e. ZZ ) ) | 
						
							| 38 | 36 37 | syl5ibrcom |  |-  ( ( ph /\ k e. ( ( M + 1 ) ... H ) ) -> ( ( R ` k ) = ( P - ( k x. 2 ) ) -> ( R ` k ) e. ZZ ) ) | 
						
							| 39 | 29 38 | syld |  |-  ( ( ph /\ k e. ( ( M + 1 ) ... H ) ) -> ( A. k e. ( ( M + 1 ) ... H ) ( R ` k ) = ( P - ( k x. 2 ) ) -> ( R ` k ) e. ZZ ) ) | 
						
							| 40 | 26 39 | mpd |  |-  ( ( ph /\ k e. ( ( M + 1 ) ... H ) ) -> ( R ` k ) e. ZZ ) | 
						
							| 41 | 24 40 | fprodzcl |  |-  ( ph -> prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) e. ZZ ) | 
						
							| 42 | 41 | zred |  |-  ( ph -> prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) e. RR ) | 
						
							| 43 |  | nnoddn2prm |  |-  ( P e. ( Prime \ { 2 } ) -> ( P e. NN /\ -. 2 || P ) ) | 
						
							| 44 |  | nnrp |  |-  ( P e. NN -> P e. RR+ ) | 
						
							| 45 | 44 | adantr |  |-  ( ( P e. NN /\ -. 2 || P ) -> P e. RR+ ) | 
						
							| 46 | 1 43 45 | 3syl |  |-  ( ph -> P e. RR+ ) | 
						
							| 47 |  | modmulmodr |  |-  ( ( prod_ k e. ( 1 ... M ) ( R ` k ) e. ZZ /\ prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) e. RR /\ P e. RR+ ) -> ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) mod P ) ) mod P ) = ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) ) mod P ) ) | 
						
							| 48 | 47 | eqcomd |  |-  ( ( prod_ k e. ( 1 ... M ) ( R ` k ) e. ZZ /\ prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) e. RR /\ P e. RR+ ) -> ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) ) mod P ) = ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) mod P ) ) mod P ) ) | 
						
							| 49 | 23 42 46 48 | syl3anc |  |-  ( ph -> ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) ) mod P ) = ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) mod P ) ) mod P ) ) | 
						
							| 50 | 1 2 3 4 5 | gausslemma2dlem5 |  |-  ( ph -> ( prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) mod P ) = ( ( ( -u 1 ^ N ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) mod P ) ) | 
						
							| 51 | 50 | oveq2d |  |-  ( ph -> ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) mod P ) ) = ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( ( ( -u 1 ^ N ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) mod P ) ) ) | 
						
							| 52 | 51 | oveq1d |  |-  ( ph -> ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) mod P ) ) mod P ) = ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( ( ( -u 1 ^ N ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) mod P ) ) mod P ) ) | 
						
							| 53 |  | neg1rr |  |-  -u 1 e. RR | 
						
							| 54 | 53 | a1i |  |-  ( ph -> -u 1 e. RR ) | 
						
							| 55 | 1 4 2 5 | gausslemma2dlem0h |  |-  ( ph -> N e. NN0 ) | 
						
							| 56 | 54 55 | reexpcld |  |-  ( ph -> ( -u 1 ^ N ) e. RR ) | 
						
							| 57 | 32 | adantl |  |-  ( ( ph /\ k e. ( ( M + 1 ) ... H ) ) -> k e. ZZ ) | 
						
							| 58 | 15 | a1i |  |-  ( ( ph /\ k e. ( ( M + 1 ) ... H ) ) -> 2 e. ZZ ) | 
						
							| 59 | 57 58 | zmulcld |  |-  ( ( ph /\ k e. ( ( M + 1 ) ... H ) ) -> ( k x. 2 ) e. ZZ ) | 
						
							| 60 | 24 59 | fprodzcl |  |-  ( ph -> prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) e. ZZ ) | 
						
							| 61 | 60 | zred |  |-  ( ph -> prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) e. RR ) | 
						
							| 62 | 56 61 | remulcld |  |-  ( ph -> ( ( -u 1 ^ N ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) e. RR ) | 
						
							| 63 |  | modmulmodr |  |-  ( ( prod_ k e. ( 1 ... M ) ( R ` k ) e. ZZ /\ ( ( -u 1 ^ N ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) e. RR /\ P e. RR+ ) -> ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( ( ( -u 1 ^ N ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) mod P ) ) mod P ) = ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( ( -u 1 ^ N ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) ) mod P ) ) | 
						
							| 64 | 23 62 46 63 | syl3anc |  |-  ( ph -> ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( ( ( -u 1 ^ N ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) mod P ) ) mod P ) = ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( ( -u 1 ^ N ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) ) mod P ) ) | 
						
							| 65 | 9 | prodeq2d |  |-  ( ph -> prod_ k e. ( 1 ... M ) ( R ` k ) = prod_ k e. ( 1 ... M ) ( k x. 2 ) ) | 
						
							| 66 | 65 | oveq1d |  |-  ( ph -> ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) = ( prod_ k e. ( 1 ... M ) ( k x. 2 ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) ) | 
						
							| 67 |  | fzfid |  |-  ( ph -> ( 1 ... H ) e. Fin ) | 
						
							| 68 |  | elfzelz |  |-  ( k e. ( 1 ... H ) -> k e. ZZ ) | 
						
							| 69 | 68 | zcnd |  |-  ( k e. ( 1 ... H ) -> k e. CC ) | 
						
							| 70 | 69 | adantl |  |-  ( ( ph /\ k e. ( 1 ... H ) ) -> k e. CC ) | 
						
							| 71 |  | 2cn |  |-  2 e. CC | 
						
							| 72 | 71 | a1i |  |-  ( ( ph /\ k e. ( 1 ... H ) ) -> 2 e. CC ) | 
						
							| 73 | 67 70 72 | fprodmul |  |-  ( ph -> prod_ k e. ( 1 ... H ) ( k x. 2 ) = ( prod_ k e. ( 1 ... H ) k x. prod_ k e. ( 1 ... H ) 2 ) ) | 
						
							| 74 | 1 4 | gausslemma2dlem0d |  |-  ( ph -> M e. NN0 ) | 
						
							| 75 | 74 | nn0red |  |-  ( ph -> M e. RR ) | 
						
							| 76 | 75 | ltp1d |  |-  ( ph -> M < ( M + 1 ) ) | 
						
							| 77 |  | fzdisj |  |-  ( M < ( M + 1 ) -> ( ( 1 ... M ) i^i ( ( M + 1 ) ... H ) ) = (/) ) | 
						
							| 78 | 76 77 | syl |  |-  ( ph -> ( ( 1 ... M ) i^i ( ( M + 1 ) ... H ) ) = (/) ) | 
						
							| 79 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 80 |  | nn0pzuz |  |-  ( ( M e. NN0 /\ 1 e. ZZ ) -> ( M + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 81 | 74 79 80 | syl2anc |  |-  ( ph -> ( M + 1 ) e. ( ZZ>= ` 1 ) ) | 
						
							| 82 | 74 | nn0zd |  |-  ( ph -> M e. ZZ ) | 
						
							| 83 | 1 2 | gausslemma2dlem0b |  |-  ( ph -> H e. NN ) | 
						
							| 84 | 83 | nnzd |  |-  ( ph -> H e. ZZ ) | 
						
							| 85 | 1 4 2 | gausslemma2dlem0g |  |-  ( ph -> M <_ H ) | 
						
							| 86 |  | eluz2 |  |-  ( H e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ H e. ZZ /\ M <_ H ) ) | 
						
							| 87 | 82 84 85 86 | syl3anbrc |  |-  ( ph -> H e. ( ZZ>= ` M ) ) | 
						
							| 88 |  | fzsplit2 |  |-  ( ( ( M + 1 ) e. ( ZZ>= ` 1 ) /\ H e. ( ZZ>= ` M ) ) -> ( 1 ... H ) = ( ( 1 ... M ) u. ( ( M + 1 ) ... H ) ) ) | 
						
							| 89 | 81 87 88 | syl2anc |  |-  ( ph -> ( 1 ... H ) = ( ( 1 ... M ) u. ( ( M + 1 ) ... H ) ) ) | 
						
							| 90 | 15 | a1i |  |-  ( k e. ( 1 ... H ) -> 2 e. ZZ ) | 
						
							| 91 | 68 90 | zmulcld |  |-  ( k e. ( 1 ... H ) -> ( k x. 2 ) e. ZZ ) | 
						
							| 92 | 91 | adantl |  |-  ( ( ph /\ k e. ( 1 ... H ) ) -> ( k x. 2 ) e. ZZ ) | 
						
							| 93 | 92 | zcnd |  |-  ( ( ph /\ k e. ( 1 ... H ) ) -> ( k x. 2 ) e. CC ) | 
						
							| 94 | 78 89 67 93 | fprodsplit |  |-  ( ph -> prod_ k e. ( 1 ... H ) ( k x. 2 ) = ( prod_ k e. ( 1 ... M ) ( k x. 2 ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) ) | 
						
							| 95 |  | nnnn0 |  |-  ( P e. NN -> P e. NN0 ) | 
						
							| 96 | 95 | anim1i |  |-  ( ( P e. NN /\ -. 2 || P ) -> ( P e. NN0 /\ -. 2 || P ) ) | 
						
							| 97 | 43 96 | syl |  |-  ( P e. ( Prime \ { 2 } ) -> ( P e. NN0 /\ -. 2 || P ) ) | 
						
							| 98 |  | nn0oddm1d2 |  |-  ( P e. NN0 -> ( -. 2 || P <-> ( ( P - 1 ) / 2 ) e. NN0 ) ) | 
						
							| 99 | 98 | biimpa |  |-  ( ( P e. NN0 /\ -. 2 || P ) -> ( ( P - 1 ) / 2 ) e. NN0 ) | 
						
							| 100 | 2 99 | eqeltrid |  |-  ( ( P e. NN0 /\ -. 2 || P ) -> H e. NN0 ) | 
						
							| 101 | 1 97 100 | 3syl |  |-  ( ph -> H e. NN0 ) | 
						
							| 102 |  | fprodfac |  |-  ( H e. NN0 -> ( ! ` H ) = prod_ k e. ( 1 ... H ) k ) | 
						
							| 103 | 101 102 | syl |  |-  ( ph -> ( ! ` H ) = prod_ k e. ( 1 ... H ) k ) | 
						
							| 104 | 103 | eqcomd |  |-  ( ph -> prod_ k e. ( 1 ... H ) k = ( ! ` H ) ) | 
						
							| 105 |  | fzfi |  |-  ( 1 ... H ) e. Fin | 
						
							| 106 | 105 71 | pm3.2i |  |-  ( ( 1 ... H ) e. Fin /\ 2 e. CC ) | 
						
							| 107 |  | fprodconst |  |-  ( ( ( 1 ... H ) e. Fin /\ 2 e. CC ) -> prod_ k e. ( 1 ... H ) 2 = ( 2 ^ ( # ` ( 1 ... H ) ) ) ) | 
						
							| 108 | 106 107 | mp1i |  |-  ( ph -> prod_ k e. ( 1 ... H ) 2 = ( 2 ^ ( # ` ( 1 ... H ) ) ) ) | 
						
							| 109 | 104 108 | oveq12d |  |-  ( ph -> ( prod_ k e. ( 1 ... H ) k x. prod_ k e. ( 1 ... H ) 2 ) = ( ( ! ` H ) x. ( 2 ^ ( # ` ( 1 ... H ) ) ) ) ) | 
						
							| 110 |  | hashfz1 |  |-  ( H e. NN0 -> ( # ` ( 1 ... H ) ) = H ) | 
						
							| 111 | 101 110 | syl |  |-  ( ph -> ( # ` ( 1 ... H ) ) = H ) | 
						
							| 112 | 111 | oveq2d |  |-  ( ph -> ( 2 ^ ( # ` ( 1 ... H ) ) ) = ( 2 ^ H ) ) | 
						
							| 113 | 112 | oveq2d |  |-  ( ph -> ( ( ! ` H ) x. ( 2 ^ ( # ` ( 1 ... H ) ) ) ) = ( ( ! ` H ) x. ( 2 ^ H ) ) ) | 
						
							| 114 | 101 | faccld |  |-  ( ph -> ( ! ` H ) e. NN ) | 
						
							| 115 | 114 | nncnd |  |-  ( ph -> ( ! ` H ) e. CC ) | 
						
							| 116 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 117 |  | nn0expcl |  |-  ( ( 2 e. NN0 /\ H e. NN0 ) -> ( 2 ^ H ) e. NN0 ) | 
						
							| 118 | 117 | nn0cnd |  |-  ( ( 2 e. NN0 /\ H e. NN0 ) -> ( 2 ^ H ) e. CC ) | 
						
							| 119 | 116 101 118 | sylancr |  |-  ( ph -> ( 2 ^ H ) e. CC ) | 
						
							| 120 | 115 119 | mulcomd |  |-  ( ph -> ( ( ! ` H ) x. ( 2 ^ H ) ) = ( ( 2 ^ H ) x. ( ! ` H ) ) ) | 
						
							| 121 | 109 113 120 | 3eqtrd |  |-  ( ph -> ( prod_ k e. ( 1 ... H ) k x. prod_ k e. ( 1 ... H ) 2 ) = ( ( 2 ^ H ) x. ( ! ` H ) ) ) | 
						
							| 122 | 73 94 121 | 3eqtr3d |  |-  ( ph -> ( prod_ k e. ( 1 ... M ) ( k x. 2 ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) = ( ( 2 ^ H ) x. ( ! ` H ) ) ) | 
						
							| 123 | 66 122 | eqtrd |  |-  ( ph -> ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) = ( ( 2 ^ H ) x. ( ! ` H ) ) ) | 
						
							| 124 | 123 | oveq2d |  |-  ( ph -> ( ( -u 1 ^ N ) x. ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) ) = ( ( -u 1 ^ N ) x. ( ( 2 ^ H ) x. ( ! ` H ) ) ) ) | 
						
							| 125 | 23 | zcnd |  |-  ( ph -> prod_ k e. ( 1 ... M ) ( R ` k ) e. CC ) | 
						
							| 126 | 56 | recnd |  |-  ( ph -> ( -u 1 ^ N ) e. CC ) | 
						
							| 127 | 60 | zcnd |  |-  ( ph -> prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) e. CC ) | 
						
							| 128 | 125 126 127 | mul12d |  |-  ( ph -> ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( ( -u 1 ^ N ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) ) = ( ( -u 1 ^ N ) x. ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) ) ) | 
						
							| 129 | 126 119 115 | mulassd |  |-  ( ph -> ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( ! ` H ) ) = ( ( -u 1 ^ N ) x. ( ( 2 ^ H ) x. ( ! ` H ) ) ) ) | 
						
							| 130 | 124 128 129 | 3eqtr4d |  |-  ( ph -> ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( ( -u 1 ^ N ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) ) = ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( ! ` H ) ) ) | 
						
							| 131 | 130 | oveq1d |  |-  ( ph -> ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( ( -u 1 ^ N ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) ) mod P ) = ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( ! ` H ) ) mod P ) ) | 
						
							| 132 | 52 64 131 | 3eqtrd |  |-  ( ph -> ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) mod P ) ) mod P ) = ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( ! ` H ) ) mod P ) ) | 
						
							| 133 | 7 49 132 | 3eqtrd |  |-  ( ph -> ( ( ! ` H ) mod P ) = ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( ! ` H ) ) mod P ) ) |