Step |
Hyp |
Ref |
Expression |
1 |
|
gausslemma2d.p |
|- ( ph -> P e. ( Prime \ { 2 } ) ) |
2 |
|
gausslemma2d.h |
|- H = ( ( P - 1 ) / 2 ) |
3 |
|
gausslemma2d.r |
|- R = ( x e. ( 1 ... H ) |-> if ( ( x x. 2 ) < ( P / 2 ) , ( x x. 2 ) , ( P - ( x x. 2 ) ) ) ) |
4 |
|
gausslemma2d.m |
|- M = ( |_ ` ( P / 4 ) ) |
5 |
|
gausslemma2d.n |
|- N = ( H - M ) |
6 |
1 2 3 4
|
gausslemma2dlem4 |
|- ( ph -> ( ! ` H ) = ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) ) ) |
7 |
6
|
oveq1d |
|- ( ph -> ( ( ! ` H ) mod P ) = ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) ) mod P ) ) |
8 |
|
fzfid |
|- ( ph -> ( 1 ... M ) e. Fin ) |
9 |
1 2 3 4
|
gausslemma2dlem2 |
|- ( ph -> A. k e. ( 1 ... M ) ( R ` k ) = ( k x. 2 ) ) |
10 |
9
|
adantr |
|- ( ( ph /\ k e. ( 1 ... M ) ) -> A. k e. ( 1 ... M ) ( R ` k ) = ( k x. 2 ) ) |
11 |
|
rspa |
|- ( ( A. k e. ( 1 ... M ) ( R ` k ) = ( k x. 2 ) /\ k e. ( 1 ... M ) ) -> ( R ` k ) = ( k x. 2 ) ) |
12 |
11
|
expcom |
|- ( k e. ( 1 ... M ) -> ( A. k e. ( 1 ... M ) ( R ` k ) = ( k x. 2 ) -> ( R ` k ) = ( k x. 2 ) ) ) |
13 |
12
|
adantl |
|- ( ( ph /\ k e. ( 1 ... M ) ) -> ( A. k e. ( 1 ... M ) ( R ` k ) = ( k x. 2 ) -> ( R ` k ) = ( k x. 2 ) ) ) |
14 |
|
elfzelz |
|- ( k e. ( 1 ... M ) -> k e. ZZ ) |
15 |
|
2z |
|- 2 e. ZZ |
16 |
15
|
a1i |
|- ( k e. ( 1 ... M ) -> 2 e. ZZ ) |
17 |
14 16
|
zmulcld |
|- ( k e. ( 1 ... M ) -> ( k x. 2 ) e. ZZ ) |
18 |
17
|
adantl |
|- ( ( ph /\ k e. ( 1 ... M ) ) -> ( k x. 2 ) e. ZZ ) |
19 |
|
eleq1 |
|- ( ( R ` k ) = ( k x. 2 ) -> ( ( R ` k ) e. ZZ <-> ( k x. 2 ) e. ZZ ) ) |
20 |
18 19
|
syl5ibrcom |
|- ( ( ph /\ k e. ( 1 ... M ) ) -> ( ( R ` k ) = ( k x. 2 ) -> ( R ` k ) e. ZZ ) ) |
21 |
13 20
|
syld |
|- ( ( ph /\ k e. ( 1 ... M ) ) -> ( A. k e. ( 1 ... M ) ( R ` k ) = ( k x. 2 ) -> ( R ` k ) e. ZZ ) ) |
22 |
10 21
|
mpd |
|- ( ( ph /\ k e. ( 1 ... M ) ) -> ( R ` k ) e. ZZ ) |
23 |
8 22
|
fprodzcl |
|- ( ph -> prod_ k e. ( 1 ... M ) ( R ` k ) e. ZZ ) |
24 |
|
fzfid |
|- ( ph -> ( ( M + 1 ) ... H ) e. Fin ) |
25 |
1 2 3 4
|
gausslemma2dlem3 |
|- ( ph -> A. k e. ( ( M + 1 ) ... H ) ( R ` k ) = ( P - ( k x. 2 ) ) ) |
26 |
25
|
adantr |
|- ( ( ph /\ k e. ( ( M + 1 ) ... H ) ) -> A. k e. ( ( M + 1 ) ... H ) ( R ` k ) = ( P - ( k x. 2 ) ) ) |
27 |
|
rspa |
|- ( ( A. k e. ( ( M + 1 ) ... H ) ( R ` k ) = ( P - ( k x. 2 ) ) /\ k e. ( ( M + 1 ) ... H ) ) -> ( R ` k ) = ( P - ( k x. 2 ) ) ) |
28 |
27
|
expcom |
|- ( k e. ( ( M + 1 ) ... H ) -> ( A. k e. ( ( M + 1 ) ... H ) ( R ` k ) = ( P - ( k x. 2 ) ) -> ( R ` k ) = ( P - ( k x. 2 ) ) ) ) |
29 |
28
|
adantl |
|- ( ( ph /\ k e. ( ( M + 1 ) ... H ) ) -> ( A. k e. ( ( M + 1 ) ... H ) ( R ` k ) = ( P - ( k x. 2 ) ) -> ( R ` k ) = ( P - ( k x. 2 ) ) ) ) |
30 |
1
|
gausslemma2dlem0a |
|- ( ph -> P e. NN ) |
31 |
30
|
nnzd |
|- ( ph -> P e. ZZ ) |
32 |
|
elfzelz |
|- ( k e. ( ( M + 1 ) ... H ) -> k e. ZZ ) |
33 |
15
|
a1i |
|- ( k e. ( ( M + 1 ) ... H ) -> 2 e. ZZ ) |
34 |
32 33
|
zmulcld |
|- ( k e. ( ( M + 1 ) ... H ) -> ( k x. 2 ) e. ZZ ) |
35 |
|
zsubcl |
|- ( ( P e. ZZ /\ ( k x. 2 ) e. ZZ ) -> ( P - ( k x. 2 ) ) e. ZZ ) |
36 |
31 34 35
|
syl2an |
|- ( ( ph /\ k e. ( ( M + 1 ) ... H ) ) -> ( P - ( k x. 2 ) ) e. ZZ ) |
37 |
|
eleq1 |
|- ( ( R ` k ) = ( P - ( k x. 2 ) ) -> ( ( R ` k ) e. ZZ <-> ( P - ( k x. 2 ) ) e. ZZ ) ) |
38 |
36 37
|
syl5ibrcom |
|- ( ( ph /\ k e. ( ( M + 1 ) ... H ) ) -> ( ( R ` k ) = ( P - ( k x. 2 ) ) -> ( R ` k ) e. ZZ ) ) |
39 |
29 38
|
syld |
|- ( ( ph /\ k e. ( ( M + 1 ) ... H ) ) -> ( A. k e. ( ( M + 1 ) ... H ) ( R ` k ) = ( P - ( k x. 2 ) ) -> ( R ` k ) e. ZZ ) ) |
40 |
26 39
|
mpd |
|- ( ( ph /\ k e. ( ( M + 1 ) ... H ) ) -> ( R ` k ) e. ZZ ) |
41 |
24 40
|
fprodzcl |
|- ( ph -> prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) e. ZZ ) |
42 |
41
|
zred |
|- ( ph -> prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) e. RR ) |
43 |
|
nnoddn2prm |
|- ( P e. ( Prime \ { 2 } ) -> ( P e. NN /\ -. 2 || P ) ) |
44 |
|
nnrp |
|- ( P e. NN -> P e. RR+ ) |
45 |
44
|
adantr |
|- ( ( P e. NN /\ -. 2 || P ) -> P e. RR+ ) |
46 |
1 43 45
|
3syl |
|- ( ph -> P e. RR+ ) |
47 |
|
modmulmodr |
|- ( ( prod_ k e. ( 1 ... M ) ( R ` k ) e. ZZ /\ prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) e. RR /\ P e. RR+ ) -> ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) mod P ) ) mod P ) = ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) ) mod P ) ) |
48 |
47
|
eqcomd |
|- ( ( prod_ k e. ( 1 ... M ) ( R ` k ) e. ZZ /\ prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) e. RR /\ P e. RR+ ) -> ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) ) mod P ) = ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) mod P ) ) mod P ) ) |
49 |
23 42 46 48
|
syl3anc |
|- ( ph -> ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) ) mod P ) = ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) mod P ) ) mod P ) ) |
50 |
1 2 3 4 5
|
gausslemma2dlem5 |
|- ( ph -> ( prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) mod P ) = ( ( ( -u 1 ^ N ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) mod P ) ) |
51 |
50
|
oveq2d |
|- ( ph -> ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) mod P ) ) = ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( ( ( -u 1 ^ N ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) mod P ) ) ) |
52 |
51
|
oveq1d |
|- ( ph -> ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) mod P ) ) mod P ) = ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( ( ( -u 1 ^ N ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) mod P ) ) mod P ) ) |
53 |
|
neg1rr |
|- -u 1 e. RR |
54 |
53
|
a1i |
|- ( ph -> -u 1 e. RR ) |
55 |
1 4 2 5
|
gausslemma2dlem0h |
|- ( ph -> N e. NN0 ) |
56 |
54 55
|
reexpcld |
|- ( ph -> ( -u 1 ^ N ) e. RR ) |
57 |
32
|
adantl |
|- ( ( ph /\ k e. ( ( M + 1 ) ... H ) ) -> k e. ZZ ) |
58 |
15
|
a1i |
|- ( ( ph /\ k e. ( ( M + 1 ) ... H ) ) -> 2 e. ZZ ) |
59 |
57 58
|
zmulcld |
|- ( ( ph /\ k e. ( ( M + 1 ) ... H ) ) -> ( k x. 2 ) e. ZZ ) |
60 |
24 59
|
fprodzcl |
|- ( ph -> prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) e. ZZ ) |
61 |
60
|
zred |
|- ( ph -> prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) e. RR ) |
62 |
56 61
|
remulcld |
|- ( ph -> ( ( -u 1 ^ N ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) e. RR ) |
63 |
|
modmulmodr |
|- ( ( prod_ k e. ( 1 ... M ) ( R ` k ) e. ZZ /\ ( ( -u 1 ^ N ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) e. RR /\ P e. RR+ ) -> ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( ( ( -u 1 ^ N ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) mod P ) ) mod P ) = ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( ( -u 1 ^ N ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) ) mod P ) ) |
64 |
23 62 46 63
|
syl3anc |
|- ( ph -> ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( ( ( -u 1 ^ N ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) mod P ) ) mod P ) = ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( ( -u 1 ^ N ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) ) mod P ) ) |
65 |
9
|
prodeq2d |
|- ( ph -> prod_ k e. ( 1 ... M ) ( R ` k ) = prod_ k e. ( 1 ... M ) ( k x. 2 ) ) |
66 |
65
|
oveq1d |
|- ( ph -> ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) = ( prod_ k e. ( 1 ... M ) ( k x. 2 ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) ) |
67 |
|
fzfid |
|- ( ph -> ( 1 ... H ) e. Fin ) |
68 |
|
elfzelz |
|- ( k e. ( 1 ... H ) -> k e. ZZ ) |
69 |
68
|
zcnd |
|- ( k e. ( 1 ... H ) -> k e. CC ) |
70 |
69
|
adantl |
|- ( ( ph /\ k e. ( 1 ... H ) ) -> k e. CC ) |
71 |
|
2cn |
|- 2 e. CC |
72 |
71
|
a1i |
|- ( ( ph /\ k e. ( 1 ... H ) ) -> 2 e. CC ) |
73 |
67 70 72
|
fprodmul |
|- ( ph -> prod_ k e. ( 1 ... H ) ( k x. 2 ) = ( prod_ k e. ( 1 ... H ) k x. prod_ k e. ( 1 ... H ) 2 ) ) |
74 |
1 4
|
gausslemma2dlem0d |
|- ( ph -> M e. NN0 ) |
75 |
74
|
nn0red |
|- ( ph -> M e. RR ) |
76 |
75
|
ltp1d |
|- ( ph -> M < ( M + 1 ) ) |
77 |
|
fzdisj |
|- ( M < ( M + 1 ) -> ( ( 1 ... M ) i^i ( ( M + 1 ) ... H ) ) = (/) ) |
78 |
76 77
|
syl |
|- ( ph -> ( ( 1 ... M ) i^i ( ( M + 1 ) ... H ) ) = (/) ) |
79 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
80 |
|
nn0pzuz |
|- ( ( M e. NN0 /\ 1 e. ZZ ) -> ( M + 1 ) e. ( ZZ>= ` 1 ) ) |
81 |
74 79 80
|
syl2anc |
|- ( ph -> ( M + 1 ) e. ( ZZ>= ` 1 ) ) |
82 |
74
|
nn0zd |
|- ( ph -> M e. ZZ ) |
83 |
1 2
|
gausslemma2dlem0b |
|- ( ph -> H e. NN ) |
84 |
83
|
nnzd |
|- ( ph -> H e. ZZ ) |
85 |
1 4 2
|
gausslemma2dlem0g |
|- ( ph -> M <_ H ) |
86 |
|
eluz2 |
|- ( H e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ H e. ZZ /\ M <_ H ) ) |
87 |
82 84 85 86
|
syl3anbrc |
|- ( ph -> H e. ( ZZ>= ` M ) ) |
88 |
|
fzsplit2 |
|- ( ( ( M + 1 ) e. ( ZZ>= ` 1 ) /\ H e. ( ZZ>= ` M ) ) -> ( 1 ... H ) = ( ( 1 ... M ) u. ( ( M + 1 ) ... H ) ) ) |
89 |
81 87 88
|
syl2anc |
|- ( ph -> ( 1 ... H ) = ( ( 1 ... M ) u. ( ( M + 1 ) ... H ) ) ) |
90 |
15
|
a1i |
|- ( k e. ( 1 ... H ) -> 2 e. ZZ ) |
91 |
68 90
|
zmulcld |
|- ( k e. ( 1 ... H ) -> ( k x. 2 ) e. ZZ ) |
92 |
91
|
adantl |
|- ( ( ph /\ k e. ( 1 ... H ) ) -> ( k x. 2 ) e. ZZ ) |
93 |
92
|
zcnd |
|- ( ( ph /\ k e. ( 1 ... H ) ) -> ( k x. 2 ) e. CC ) |
94 |
78 89 67 93
|
fprodsplit |
|- ( ph -> prod_ k e. ( 1 ... H ) ( k x. 2 ) = ( prod_ k e. ( 1 ... M ) ( k x. 2 ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) ) |
95 |
|
nnnn0 |
|- ( P e. NN -> P e. NN0 ) |
96 |
95
|
anim1i |
|- ( ( P e. NN /\ -. 2 || P ) -> ( P e. NN0 /\ -. 2 || P ) ) |
97 |
43 96
|
syl |
|- ( P e. ( Prime \ { 2 } ) -> ( P e. NN0 /\ -. 2 || P ) ) |
98 |
|
nn0oddm1d2 |
|- ( P e. NN0 -> ( -. 2 || P <-> ( ( P - 1 ) / 2 ) e. NN0 ) ) |
99 |
98
|
biimpa |
|- ( ( P e. NN0 /\ -. 2 || P ) -> ( ( P - 1 ) / 2 ) e. NN0 ) |
100 |
2 99
|
eqeltrid |
|- ( ( P e. NN0 /\ -. 2 || P ) -> H e. NN0 ) |
101 |
1 97 100
|
3syl |
|- ( ph -> H e. NN0 ) |
102 |
|
fprodfac |
|- ( H e. NN0 -> ( ! ` H ) = prod_ k e. ( 1 ... H ) k ) |
103 |
101 102
|
syl |
|- ( ph -> ( ! ` H ) = prod_ k e. ( 1 ... H ) k ) |
104 |
103
|
eqcomd |
|- ( ph -> prod_ k e. ( 1 ... H ) k = ( ! ` H ) ) |
105 |
|
fzfi |
|- ( 1 ... H ) e. Fin |
106 |
105 71
|
pm3.2i |
|- ( ( 1 ... H ) e. Fin /\ 2 e. CC ) |
107 |
|
fprodconst |
|- ( ( ( 1 ... H ) e. Fin /\ 2 e. CC ) -> prod_ k e. ( 1 ... H ) 2 = ( 2 ^ ( # ` ( 1 ... H ) ) ) ) |
108 |
106 107
|
mp1i |
|- ( ph -> prod_ k e. ( 1 ... H ) 2 = ( 2 ^ ( # ` ( 1 ... H ) ) ) ) |
109 |
104 108
|
oveq12d |
|- ( ph -> ( prod_ k e. ( 1 ... H ) k x. prod_ k e. ( 1 ... H ) 2 ) = ( ( ! ` H ) x. ( 2 ^ ( # ` ( 1 ... H ) ) ) ) ) |
110 |
|
hashfz1 |
|- ( H e. NN0 -> ( # ` ( 1 ... H ) ) = H ) |
111 |
101 110
|
syl |
|- ( ph -> ( # ` ( 1 ... H ) ) = H ) |
112 |
111
|
oveq2d |
|- ( ph -> ( 2 ^ ( # ` ( 1 ... H ) ) ) = ( 2 ^ H ) ) |
113 |
112
|
oveq2d |
|- ( ph -> ( ( ! ` H ) x. ( 2 ^ ( # ` ( 1 ... H ) ) ) ) = ( ( ! ` H ) x. ( 2 ^ H ) ) ) |
114 |
101
|
faccld |
|- ( ph -> ( ! ` H ) e. NN ) |
115 |
114
|
nncnd |
|- ( ph -> ( ! ` H ) e. CC ) |
116 |
|
2nn0 |
|- 2 e. NN0 |
117 |
|
nn0expcl |
|- ( ( 2 e. NN0 /\ H e. NN0 ) -> ( 2 ^ H ) e. NN0 ) |
118 |
117
|
nn0cnd |
|- ( ( 2 e. NN0 /\ H e. NN0 ) -> ( 2 ^ H ) e. CC ) |
119 |
116 101 118
|
sylancr |
|- ( ph -> ( 2 ^ H ) e. CC ) |
120 |
115 119
|
mulcomd |
|- ( ph -> ( ( ! ` H ) x. ( 2 ^ H ) ) = ( ( 2 ^ H ) x. ( ! ` H ) ) ) |
121 |
109 113 120
|
3eqtrd |
|- ( ph -> ( prod_ k e. ( 1 ... H ) k x. prod_ k e. ( 1 ... H ) 2 ) = ( ( 2 ^ H ) x. ( ! ` H ) ) ) |
122 |
73 94 121
|
3eqtr3d |
|- ( ph -> ( prod_ k e. ( 1 ... M ) ( k x. 2 ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) = ( ( 2 ^ H ) x. ( ! ` H ) ) ) |
123 |
66 122
|
eqtrd |
|- ( ph -> ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) = ( ( 2 ^ H ) x. ( ! ` H ) ) ) |
124 |
123
|
oveq2d |
|- ( ph -> ( ( -u 1 ^ N ) x. ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) ) = ( ( -u 1 ^ N ) x. ( ( 2 ^ H ) x. ( ! ` H ) ) ) ) |
125 |
23
|
zcnd |
|- ( ph -> prod_ k e. ( 1 ... M ) ( R ` k ) e. CC ) |
126 |
56
|
recnd |
|- ( ph -> ( -u 1 ^ N ) e. CC ) |
127 |
60
|
zcnd |
|- ( ph -> prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) e. CC ) |
128 |
125 126 127
|
mul12d |
|- ( ph -> ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( ( -u 1 ^ N ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) ) = ( ( -u 1 ^ N ) x. ( prod_ k e. ( 1 ... M ) ( R ` k ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) ) ) |
129 |
126 119 115
|
mulassd |
|- ( ph -> ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( ! ` H ) ) = ( ( -u 1 ^ N ) x. ( ( 2 ^ H ) x. ( ! ` H ) ) ) ) |
130 |
124 128 129
|
3eqtr4d |
|- ( ph -> ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( ( -u 1 ^ N ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) ) = ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( ! ` H ) ) ) |
131 |
130
|
oveq1d |
|- ( ph -> ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( ( -u 1 ^ N ) x. prod_ k e. ( ( M + 1 ) ... H ) ( k x. 2 ) ) ) mod P ) = ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( ! ` H ) ) mod P ) ) |
132 |
52 64 131
|
3eqtrd |
|- ( ph -> ( ( prod_ k e. ( 1 ... M ) ( R ` k ) x. ( prod_ k e. ( ( M + 1 ) ... H ) ( R ` k ) mod P ) ) mod P ) = ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( ! ` H ) ) mod P ) ) |
133 |
7 49 132
|
3eqtrd |
|- ( ph -> ( ( ! ` H ) mod P ) = ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( ! ` H ) ) mod P ) ) |