Step |
Hyp |
Ref |
Expression |
1 |
|
gausslemma2d.p |
|- ( ph -> P e. ( Prime \ { 2 } ) ) |
2 |
|
gausslemma2d.h |
|- H = ( ( P - 1 ) / 2 ) |
3 |
|
gausslemma2d.r |
|- R = ( x e. ( 1 ... H ) |-> if ( ( x x. 2 ) < ( P / 2 ) , ( x x. 2 ) , ( P - ( x x. 2 ) ) ) ) |
4 |
|
gausslemma2d.m |
|- M = ( |_ ` ( P / 4 ) ) |
5 |
|
gausslemma2d.n |
|- N = ( H - M ) |
6 |
1 2 3 4 5
|
gausslemma2dlem6 |
|- ( ph -> ( ( ! ` H ) mod P ) = ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( ! ` H ) ) mod P ) ) |
7 |
1 2
|
gausslemma2dlem0b |
|- ( ph -> H e. NN ) |
8 |
7
|
nnnn0d |
|- ( ph -> H e. NN0 ) |
9 |
8
|
faccld |
|- ( ph -> ( ! ` H ) e. NN ) |
10 |
9
|
nncnd |
|- ( ph -> ( ! ` H ) e. CC ) |
11 |
10
|
mulid2d |
|- ( ph -> ( 1 x. ( ! ` H ) ) = ( ! ` H ) ) |
12 |
11
|
eqcomd |
|- ( ph -> ( ! ` H ) = ( 1 x. ( ! ` H ) ) ) |
13 |
12
|
oveq1d |
|- ( ph -> ( ( ! ` H ) mod P ) = ( ( 1 x. ( ! ` H ) ) mod P ) ) |
14 |
13
|
eqeq1d |
|- ( ph -> ( ( ( ! ` H ) mod P ) = ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( ! ` H ) ) mod P ) <-> ( ( 1 x. ( ! ` H ) ) mod P ) = ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( ! ` H ) ) mod P ) ) ) |
15 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
16 |
|
neg1z |
|- -u 1 e. ZZ |
17 |
1 4 2 5
|
gausslemma2dlem0h |
|- ( ph -> N e. NN0 ) |
18 |
|
zexpcl |
|- ( ( -u 1 e. ZZ /\ N e. NN0 ) -> ( -u 1 ^ N ) e. ZZ ) |
19 |
16 17 18
|
sylancr |
|- ( ph -> ( -u 1 ^ N ) e. ZZ ) |
20 |
|
2z |
|- 2 e. ZZ |
21 |
|
zexpcl |
|- ( ( 2 e. ZZ /\ H e. NN0 ) -> ( 2 ^ H ) e. ZZ ) |
22 |
20 8 21
|
sylancr |
|- ( ph -> ( 2 ^ H ) e. ZZ ) |
23 |
19 22
|
zmulcld |
|- ( ph -> ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) e. ZZ ) |
24 |
9
|
nnzd |
|- ( ph -> ( ! ` H ) e. ZZ ) |
25 |
|
eldifi |
|- ( P e. ( Prime \ { 2 } ) -> P e. Prime ) |
26 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
27 |
1 25 26
|
3syl |
|- ( ph -> P e. NN ) |
28 |
1 2
|
gausslemma2dlem0c |
|- ( ph -> ( ( ! ` H ) gcd P ) = 1 ) |
29 |
|
cncongrcoprm |
|- ( ( ( 1 e. ZZ /\ ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) e. ZZ /\ ( ! ` H ) e. ZZ ) /\ ( P e. NN /\ ( ( ! ` H ) gcd P ) = 1 ) ) -> ( ( ( 1 x. ( ! ` H ) ) mod P ) = ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( ! ` H ) ) mod P ) <-> ( 1 mod P ) = ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) ) ) |
30 |
15 23 24 27 28 29
|
syl32anc |
|- ( ph -> ( ( ( 1 x. ( ! ` H ) ) mod P ) = ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( ! ` H ) ) mod P ) <-> ( 1 mod P ) = ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) ) ) |
31 |
14 30
|
bitrd |
|- ( ph -> ( ( ( ! ` H ) mod P ) = ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( ! ` H ) ) mod P ) <-> ( 1 mod P ) = ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) ) ) |
32 |
|
simpr |
|- ( ( ph /\ ( 1 mod P ) = ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) ) -> ( 1 mod P ) = ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) ) |
33 |
26
|
nnred |
|- ( P e. Prime -> P e. RR ) |
34 |
|
prmgt1 |
|- ( P e. Prime -> 1 < P ) |
35 |
33 34
|
jca |
|- ( P e. Prime -> ( P e. RR /\ 1 < P ) ) |
36 |
25 35
|
syl |
|- ( P e. ( Prime \ { 2 } ) -> ( P e. RR /\ 1 < P ) ) |
37 |
|
1mod |
|- ( ( P e. RR /\ 1 < P ) -> ( 1 mod P ) = 1 ) |
38 |
1 36 37
|
3syl |
|- ( ph -> ( 1 mod P ) = 1 ) |
39 |
38
|
adantr |
|- ( ( ph /\ ( 1 mod P ) = ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) ) -> ( 1 mod P ) = 1 ) |
40 |
32 39
|
eqtr3d |
|- ( ( ph /\ ( 1 mod P ) = ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) ) -> ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = 1 ) |
41 |
40
|
ex |
|- ( ph -> ( ( 1 mod P ) = ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) -> ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = 1 ) ) |
42 |
31 41
|
sylbid |
|- ( ph -> ( ( ( ! ` H ) mod P ) = ( ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) x. ( ! ` H ) ) mod P ) -> ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = 1 ) ) |
43 |
6 42
|
mpd |
|- ( ph -> ( ( ( -u 1 ^ N ) x. ( 2 ^ H ) ) mod P ) = 1 ) |