| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isgbe |
|- ( Z e. GoldbachEven <-> ( Z e. Even /\ E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ Z = ( p + q ) ) ) ) |
| 2 |
|
prmnn |
|- ( p e. Prime -> p e. NN ) |
| 3 |
|
prmnn |
|- ( q e. Prime -> q e. NN ) |
| 4 |
|
nnaddcl |
|- ( ( p e. NN /\ q e. NN ) -> ( p + q ) e. NN ) |
| 5 |
2 3 4
|
syl2an |
|- ( ( p e. Prime /\ q e. Prime ) -> ( p + q ) e. NN ) |
| 6 |
|
eleq1 |
|- ( Z = ( p + q ) -> ( Z e. NN <-> ( p + q ) e. NN ) ) |
| 7 |
5 6
|
imbitrrid |
|- ( Z = ( p + q ) -> ( ( p e. Prime /\ q e. Prime ) -> Z e. NN ) ) |
| 8 |
7
|
3ad2ant3 |
|- ( ( p e. Odd /\ q e. Odd /\ Z = ( p + q ) ) -> ( ( p e. Prime /\ q e. Prime ) -> Z e. NN ) ) |
| 9 |
8
|
com12 |
|- ( ( p e. Prime /\ q e. Prime ) -> ( ( p e. Odd /\ q e. Odd /\ Z = ( p + q ) ) -> Z e. NN ) ) |
| 10 |
9
|
a1i |
|- ( Z e. Even -> ( ( p e. Prime /\ q e. Prime ) -> ( ( p e. Odd /\ q e. Odd /\ Z = ( p + q ) ) -> Z e. NN ) ) ) |
| 11 |
10
|
rexlimdvv |
|- ( Z e. Even -> ( E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ Z = ( p + q ) ) -> Z e. NN ) ) |
| 12 |
11
|
imp |
|- ( ( Z e. Even /\ E. p e. Prime E. q e. Prime ( p e. Odd /\ q e. Odd /\ Z = ( p + q ) ) ) -> Z e. NN ) |
| 13 |
1 12
|
sylbi |
|- ( Z e. GoldbachEven -> Z e. NN ) |