Step |
Hyp |
Ref |
Expression |
1 |
|
0z |
|- 0 e. ZZ |
2 |
|
gcdval |
|- ( ( 0 e. ZZ /\ 0 e. ZZ ) -> ( 0 gcd 0 ) = if ( ( 0 = 0 /\ 0 = 0 ) , 0 , sup ( { n e. ZZ | ( n || 0 /\ n || 0 ) } , RR , < ) ) ) |
3 |
1 1 2
|
mp2an |
|- ( 0 gcd 0 ) = if ( ( 0 = 0 /\ 0 = 0 ) , 0 , sup ( { n e. ZZ | ( n || 0 /\ n || 0 ) } , RR , < ) ) |
4 |
|
eqid |
|- 0 = 0 |
5 |
|
iftrue |
|- ( ( 0 = 0 /\ 0 = 0 ) -> if ( ( 0 = 0 /\ 0 = 0 ) , 0 , sup ( { n e. ZZ | ( n || 0 /\ n || 0 ) } , RR , < ) ) = 0 ) |
6 |
4 4 5
|
mp2an |
|- if ( ( 0 = 0 /\ 0 = 0 ) , 0 , sup ( { n e. ZZ | ( n || 0 /\ n || 0 ) } , RR , < ) ) = 0 |
7 |
3 6
|
eqtri |
|- ( 0 gcd 0 ) = 0 |