| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1z |
|- 1 e. ZZ |
| 2 |
|
gcddvds |
|- ( ( M e. ZZ /\ 1 e. ZZ ) -> ( ( M gcd 1 ) || M /\ ( M gcd 1 ) || 1 ) ) |
| 3 |
1 2
|
mpan2 |
|- ( M e. ZZ -> ( ( M gcd 1 ) || M /\ ( M gcd 1 ) || 1 ) ) |
| 4 |
3
|
simprd |
|- ( M e. ZZ -> ( M gcd 1 ) || 1 ) |
| 5 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 6 |
|
simpr |
|- ( ( M = 0 /\ 1 = 0 ) -> 1 = 0 ) |
| 7 |
6
|
necon3ai |
|- ( 1 =/= 0 -> -. ( M = 0 /\ 1 = 0 ) ) |
| 8 |
5 7
|
ax-mp |
|- -. ( M = 0 /\ 1 = 0 ) |
| 9 |
|
gcdn0cl |
|- ( ( ( M e. ZZ /\ 1 e. ZZ ) /\ -. ( M = 0 /\ 1 = 0 ) ) -> ( M gcd 1 ) e. NN ) |
| 10 |
8 9
|
mpan2 |
|- ( ( M e. ZZ /\ 1 e. ZZ ) -> ( M gcd 1 ) e. NN ) |
| 11 |
1 10
|
mpan2 |
|- ( M e. ZZ -> ( M gcd 1 ) e. NN ) |
| 12 |
11
|
nnzd |
|- ( M e. ZZ -> ( M gcd 1 ) e. ZZ ) |
| 13 |
|
1nn |
|- 1 e. NN |
| 14 |
|
dvdsle |
|- ( ( ( M gcd 1 ) e. ZZ /\ 1 e. NN ) -> ( ( M gcd 1 ) || 1 -> ( M gcd 1 ) <_ 1 ) ) |
| 15 |
12 13 14
|
sylancl |
|- ( M e. ZZ -> ( ( M gcd 1 ) || 1 -> ( M gcd 1 ) <_ 1 ) ) |
| 16 |
4 15
|
mpd |
|- ( M e. ZZ -> ( M gcd 1 ) <_ 1 ) |
| 17 |
|
nnle1eq1 |
|- ( ( M gcd 1 ) e. NN -> ( ( M gcd 1 ) <_ 1 <-> ( M gcd 1 ) = 1 ) ) |
| 18 |
11 17
|
syl |
|- ( M e. ZZ -> ( ( M gcd 1 ) <_ 1 <-> ( M gcd 1 ) = 1 ) ) |
| 19 |
16 18
|
mpbid |
|- ( M e. ZZ -> ( M gcd 1 ) = 1 ) |