Metamath Proof Explorer


Theorem gcd2n0cl

Description: Closure of the gcd operator if the second operand is not 0. (Contributed by AV, 10-Jul-2021)

Ref Expression
Assertion gcd2n0cl
|- ( ( M e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( M gcd N ) e. NN )

Proof

Step Hyp Ref Expression
1 neneq
 |-  ( N =/= 0 -> -. N = 0 )
2 1 intnand
 |-  ( N =/= 0 -> -. ( M = 0 /\ N = 0 ) )
3 2 anim2i
 |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ N =/= 0 ) -> ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) )
4 3 3impa
 |-  ( ( M e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) )
5 gcdn0cl
 |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( M gcd N ) e. NN )
6 4 5 syl
 |-  ( ( M e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( M gcd N ) e. NN )