Description: Closure of the gcd operator if the second operand is not 0. (Contributed by AV, 10-Jul-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | gcd2n0cl | |- ( ( M e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( M gcd N ) e. NN ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neneq | |- ( N =/= 0 -> -. N = 0 ) |
|
2 | 1 | intnand | |- ( N =/= 0 -> -. ( M = 0 /\ N = 0 ) ) |
3 | 2 | anim2i | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ N =/= 0 ) -> ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) ) |
4 | 3 | 3impa | |- ( ( M e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) ) |
5 | gcdn0cl | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( M gcd N ) e. NN ) |
|
6 | 4 5 | syl | |- ( ( M e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( M gcd N ) e. NN ) |