| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 |  |-  ( ( abs ` N ) = N -> ( ( abs ` N ) gcd M ) = ( N gcd M ) ) | 
						
							| 2 | 1 | a1i |  |-  ( ( N e. ZZ /\ M e. ZZ ) -> ( ( abs ` N ) = N -> ( ( abs ` N ) gcd M ) = ( N gcd M ) ) ) | 
						
							| 3 |  | neggcd |  |-  ( ( N e. ZZ /\ M e. ZZ ) -> ( -u N gcd M ) = ( N gcd M ) ) | 
						
							| 4 |  | oveq1 |  |-  ( ( abs ` N ) = -u N -> ( ( abs ` N ) gcd M ) = ( -u N gcd M ) ) | 
						
							| 5 | 4 | eqeq1d |  |-  ( ( abs ` N ) = -u N -> ( ( ( abs ` N ) gcd M ) = ( N gcd M ) <-> ( -u N gcd M ) = ( N gcd M ) ) ) | 
						
							| 6 | 3 5 | syl5ibrcom |  |-  ( ( N e. ZZ /\ M e. ZZ ) -> ( ( abs ` N ) = -u N -> ( ( abs ` N ) gcd M ) = ( N gcd M ) ) ) | 
						
							| 7 |  | zre |  |-  ( N e. ZZ -> N e. RR ) | 
						
							| 8 | 7 | absord |  |-  ( N e. ZZ -> ( ( abs ` N ) = N \/ ( abs ` N ) = -u N ) ) | 
						
							| 9 | 8 | adantr |  |-  ( ( N e. ZZ /\ M e. ZZ ) -> ( ( abs ` N ) = N \/ ( abs ` N ) = -u N ) ) | 
						
							| 10 | 2 6 9 | mpjaod |  |-  ( ( N e. ZZ /\ M e. ZZ ) -> ( ( abs ` N ) gcd M ) = ( N gcd M ) ) |