Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
|- ( ( abs ` N ) = N -> ( ( abs ` N ) gcd M ) = ( N gcd M ) ) |
2 |
1
|
a1i |
|- ( ( N e. ZZ /\ M e. ZZ ) -> ( ( abs ` N ) = N -> ( ( abs ` N ) gcd M ) = ( N gcd M ) ) ) |
3 |
|
neggcd |
|- ( ( N e. ZZ /\ M e. ZZ ) -> ( -u N gcd M ) = ( N gcd M ) ) |
4 |
|
oveq1 |
|- ( ( abs ` N ) = -u N -> ( ( abs ` N ) gcd M ) = ( -u N gcd M ) ) |
5 |
4
|
eqeq1d |
|- ( ( abs ` N ) = -u N -> ( ( ( abs ` N ) gcd M ) = ( N gcd M ) <-> ( -u N gcd M ) = ( N gcd M ) ) ) |
6 |
3 5
|
syl5ibrcom |
|- ( ( N e. ZZ /\ M e. ZZ ) -> ( ( abs ` N ) = -u N -> ( ( abs ` N ) gcd M ) = ( N gcd M ) ) ) |
7 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
8 |
7
|
absord |
|- ( N e. ZZ -> ( ( abs ` N ) = N \/ ( abs ` N ) = -u N ) ) |
9 |
8
|
adantr |
|- ( ( N e. ZZ /\ M e. ZZ ) -> ( ( abs ` N ) = N \/ ( abs ` N ) = -u N ) ) |
10 |
2 6 9
|
mpjaod |
|- ( ( N e. ZZ /\ M e. ZZ ) -> ( ( abs ` N ) gcd M ) = ( N gcd M ) ) |