| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gcdabs1 |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) gcd N ) = ( M gcd N ) ) | 
						
							| 2 | 1 | ancoms |  |-  ( ( N e. ZZ /\ M e. ZZ ) -> ( ( abs ` M ) gcd N ) = ( M gcd N ) ) | 
						
							| 3 |  | zabscl |  |-  ( M e. ZZ -> ( abs ` M ) e. ZZ ) | 
						
							| 4 |  | gcdcom |  |-  ( ( N e. ZZ /\ ( abs ` M ) e. ZZ ) -> ( N gcd ( abs ` M ) ) = ( ( abs ` M ) gcd N ) ) | 
						
							| 5 | 3 4 | sylan2 |  |-  ( ( N e. ZZ /\ M e. ZZ ) -> ( N gcd ( abs ` M ) ) = ( ( abs ` M ) gcd N ) ) | 
						
							| 6 |  | gcdcom |  |-  ( ( N e. ZZ /\ M e. ZZ ) -> ( N gcd M ) = ( M gcd N ) ) | 
						
							| 7 | 2 5 6 | 3eqtr4d |  |-  ( ( N e. ZZ /\ M e. ZZ ) -> ( N gcd ( abs ` M ) ) = ( N gcd M ) ) |