Step |
Hyp |
Ref |
Expression |
1 |
|
gcdabs1 |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) gcd N ) = ( M gcd N ) ) |
2 |
1
|
ancoms |
|- ( ( N e. ZZ /\ M e. ZZ ) -> ( ( abs ` M ) gcd N ) = ( M gcd N ) ) |
3 |
|
zabscl |
|- ( M e. ZZ -> ( abs ` M ) e. ZZ ) |
4 |
|
gcdcom |
|- ( ( N e. ZZ /\ ( abs ` M ) e. ZZ ) -> ( N gcd ( abs ` M ) ) = ( ( abs ` M ) gcd N ) ) |
5 |
3 4
|
sylan2 |
|- ( ( N e. ZZ /\ M e. ZZ ) -> ( N gcd ( abs ` M ) ) = ( ( abs ` M ) gcd N ) ) |
6 |
|
gcdcom |
|- ( ( N e. ZZ /\ M e. ZZ ) -> ( N gcd M ) = ( M gcd N ) ) |
7 |
2 5 6
|
3eqtr4d |
|- ( ( N e. ZZ /\ M e. ZZ ) -> ( N gcd ( abs ` M ) ) = ( N gcd M ) ) |