Step |
Hyp |
Ref |
Expression |
1 |
|
zre |
|- ( M e. ZZ -> M e. RR ) |
2 |
|
zre |
|- ( N e. ZZ -> N e. RR ) |
3 |
|
absor |
|- ( M e. RR -> ( ( abs ` M ) = M \/ ( abs ` M ) = -u M ) ) |
4 |
|
absor |
|- ( N e. RR -> ( ( abs ` N ) = N \/ ( abs ` N ) = -u N ) ) |
5 |
3 4
|
anim12i |
|- ( ( M e. RR /\ N e. RR ) -> ( ( ( abs ` M ) = M \/ ( abs ` M ) = -u M ) /\ ( ( abs ` N ) = N \/ ( abs ` N ) = -u N ) ) ) |
6 |
1 2 5
|
syl2an |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( abs ` M ) = M \/ ( abs ` M ) = -u M ) /\ ( ( abs ` N ) = N \/ ( abs ` N ) = -u N ) ) ) |
7 |
|
oveq12 |
|- ( ( ( abs ` M ) = M /\ ( abs ` N ) = N ) -> ( ( abs ` M ) gcd ( abs ` N ) ) = ( M gcd N ) ) |
8 |
7
|
a1i |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( abs ` M ) = M /\ ( abs ` N ) = N ) -> ( ( abs ` M ) gcd ( abs ` N ) ) = ( M gcd N ) ) ) |
9 |
|
oveq12 |
|- ( ( ( abs ` M ) = -u M /\ ( abs ` N ) = N ) -> ( ( abs ` M ) gcd ( abs ` N ) ) = ( -u M gcd N ) ) |
10 |
|
neggcd |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( -u M gcd N ) = ( M gcd N ) ) |
11 |
9 10
|
sylan9eqr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( ( abs ` M ) = -u M /\ ( abs ` N ) = N ) ) -> ( ( abs ` M ) gcd ( abs ` N ) ) = ( M gcd N ) ) |
12 |
11
|
ex |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( abs ` M ) = -u M /\ ( abs ` N ) = N ) -> ( ( abs ` M ) gcd ( abs ` N ) ) = ( M gcd N ) ) ) |
13 |
|
oveq12 |
|- ( ( ( abs ` M ) = M /\ ( abs ` N ) = -u N ) -> ( ( abs ` M ) gcd ( abs ` N ) ) = ( M gcd -u N ) ) |
14 |
|
gcdneg |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd -u N ) = ( M gcd N ) ) |
15 |
13 14
|
sylan9eqr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( ( abs ` M ) = M /\ ( abs ` N ) = -u N ) ) -> ( ( abs ` M ) gcd ( abs ` N ) ) = ( M gcd N ) ) |
16 |
15
|
ex |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( abs ` M ) = M /\ ( abs ` N ) = -u N ) -> ( ( abs ` M ) gcd ( abs ` N ) ) = ( M gcd N ) ) ) |
17 |
|
oveq12 |
|- ( ( ( abs ` M ) = -u M /\ ( abs ` N ) = -u N ) -> ( ( abs ` M ) gcd ( abs ` N ) ) = ( -u M gcd -u N ) ) |
18 |
|
znegcl |
|- ( M e. ZZ -> -u M e. ZZ ) |
19 |
|
gcdneg |
|- ( ( -u M e. ZZ /\ N e. ZZ ) -> ( -u M gcd -u N ) = ( -u M gcd N ) ) |
20 |
18 19
|
sylan |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( -u M gcd -u N ) = ( -u M gcd N ) ) |
21 |
20 10
|
eqtrd |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( -u M gcd -u N ) = ( M gcd N ) ) |
22 |
17 21
|
sylan9eqr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( ( abs ` M ) = -u M /\ ( abs ` N ) = -u N ) ) -> ( ( abs ` M ) gcd ( abs ` N ) ) = ( M gcd N ) ) |
23 |
22
|
ex |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( abs ` M ) = -u M /\ ( abs ` N ) = -u N ) -> ( ( abs ` M ) gcd ( abs ` N ) ) = ( M gcd N ) ) ) |
24 |
8 12 16 23
|
ccased |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( ( abs ` M ) = M \/ ( abs ` M ) = -u M ) /\ ( ( abs ` N ) = N \/ ( abs ` N ) = -u N ) ) -> ( ( abs ` M ) gcd ( abs ` N ) ) = ( M gcd N ) ) ) |
25 |
6 24
|
mpd |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) gcd ( abs ` N ) ) = ( M gcd N ) ) |