Step |
Hyp |
Ref |
Expression |
1 |
|
gcdaddmlem.1 |
|- K e. ZZ |
2 |
|
gcdaddmlem.2 |
|- M e. ZZ |
3 |
|
gcdaddmlem.3 |
|- N e. ZZ |
4 |
|
gcddvds |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) |
5 |
2 3 4
|
mp2an |
|- ( ( M gcd N ) || M /\ ( M gcd N ) || N ) |
6 |
5
|
simpli |
|- ( M gcd N ) || M |
7 |
|
gcdcl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. NN0 ) |
8 |
2 3 7
|
mp2an |
|- ( M gcd N ) e. NN0 |
9 |
8
|
nn0zi |
|- ( M gcd N ) e. ZZ |
10 |
|
1z |
|- 1 e. ZZ |
11 |
|
dvds2ln |
|- ( ( ( K e. ZZ /\ 1 e. ZZ ) /\ ( ( M gcd N ) e. ZZ /\ M e. ZZ /\ N e. ZZ ) ) -> ( ( ( M gcd N ) || M /\ ( M gcd N ) || N ) -> ( M gcd N ) || ( ( K x. M ) + ( 1 x. N ) ) ) ) |
12 |
1 10 11
|
mpanl12 |
|- ( ( ( M gcd N ) e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( ( M gcd N ) || M /\ ( M gcd N ) || N ) -> ( M gcd N ) || ( ( K x. M ) + ( 1 x. N ) ) ) ) |
13 |
9 2 3 12
|
mp3an |
|- ( ( ( M gcd N ) || M /\ ( M gcd N ) || N ) -> ( M gcd N ) || ( ( K x. M ) + ( 1 x. N ) ) ) |
14 |
5 13
|
ax-mp |
|- ( M gcd N ) || ( ( K x. M ) + ( 1 x. N ) ) |
15 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
16 |
3 15
|
ax-mp |
|- N e. CC |
17 |
16
|
mulid2i |
|- ( 1 x. N ) = N |
18 |
17
|
oveq2i |
|- ( ( K x. M ) + ( 1 x. N ) ) = ( ( K x. M ) + N ) |
19 |
14 18
|
breqtri |
|- ( M gcd N ) || ( ( K x. M ) + N ) |
20 |
|
zmulcl |
|- ( ( K e. ZZ /\ M e. ZZ ) -> ( K x. M ) e. ZZ ) |
21 |
1 2 20
|
mp2an |
|- ( K x. M ) e. ZZ |
22 |
|
zaddcl |
|- ( ( ( K x. M ) e. ZZ /\ N e. ZZ ) -> ( ( K x. M ) + N ) e. ZZ ) |
23 |
21 3 22
|
mp2an |
|- ( ( K x. M ) + N ) e. ZZ |
24 |
|
dvdslegcd |
|- ( ( ( ( M gcd N ) e. ZZ /\ M e. ZZ /\ ( ( K x. M ) + N ) e. ZZ ) /\ -. ( M = 0 /\ ( ( K x. M ) + N ) = 0 ) ) -> ( ( ( M gcd N ) || M /\ ( M gcd N ) || ( ( K x. M ) + N ) ) -> ( M gcd N ) <_ ( M gcd ( ( K x. M ) + N ) ) ) ) |
25 |
24
|
ex |
|- ( ( ( M gcd N ) e. ZZ /\ M e. ZZ /\ ( ( K x. M ) + N ) e. ZZ ) -> ( -. ( M = 0 /\ ( ( K x. M ) + N ) = 0 ) -> ( ( ( M gcd N ) || M /\ ( M gcd N ) || ( ( K x. M ) + N ) ) -> ( M gcd N ) <_ ( M gcd ( ( K x. M ) + N ) ) ) ) ) |
26 |
9 2 23 25
|
mp3an |
|- ( -. ( M = 0 /\ ( ( K x. M ) + N ) = 0 ) -> ( ( ( M gcd N ) || M /\ ( M gcd N ) || ( ( K x. M ) + N ) ) -> ( M gcd N ) <_ ( M gcd ( ( K x. M ) + N ) ) ) ) |
27 |
6 19 26
|
mp2ani |
|- ( -. ( M = 0 /\ ( ( K x. M ) + N ) = 0 ) -> ( M gcd N ) <_ ( M gcd ( ( K x. M ) + N ) ) ) |
28 |
|
gcddvds |
|- ( ( M e. ZZ /\ ( ( K x. M ) + N ) e. ZZ ) -> ( ( M gcd ( ( K x. M ) + N ) ) || M /\ ( M gcd ( ( K x. M ) + N ) ) || ( ( K x. M ) + N ) ) ) |
29 |
2 23 28
|
mp2an |
|- ( ( M gcd ( ( K x. M ) + N ) ) || M /\ ( M gcd ( ( K x. M ) + N ) ) || ( ( K x. M ) + N ) ) |
30 |
29
|
simpli |
|- ( M gcd ( ( K x. M ) + N ) ) || M |
31 |
|
gcdcl |
|- ( ( M e. ZZ /\ ( ( K x. M ) + N ) e. ZZ ) -> ( M gcd ( ( K x. M ) + N ) ) e. NN0 ) |
32 |
2 23 31
|
mp2an |
|- ( M gcd ( ( K x. M ) + N ) ) e. NN0 |
33 |
32
|
nn0zi |
|- ( M gcd ( ( K x. M ) + N ) ) e. ZZ |
34 |
|
znegcl |
|- ( K e. ZZ -> -u K e. ZZ ) |
35 |
1 34
|
ax-mp |
|- -u K e. ZZ |
36 |
|
dvds2ln |
|- ( ( ( -u K e. ZZ /\ 1 e. ZZ ) /\ ( ( M gcd ( ( K x. M ) + N ) ) e. ZZ /\ M e. ZZ /\ ( ( K x. M ) + N ) e. ZZ ) ) -> ( ( ( M gcd ( ( K x. M ) + N ) ) || M /\ ( M gcd ( ( K x. M ) + N ) ) || ( ( K x. M ) + N ) ) -> ( M gcd ( ( K x. M ) + N ) ) || ( ( -u K x. M ) + ( 1 x. ( ( K x. M ) + N ) ) ) ) ) |
37 |
35 10 36
|
mpanl12 |
|- ( ( ( M gcd ( ( K x. M ) + N ) ) e. ZZ /\ M e. ZZ /\ ( ( K x. M ) + N ) e. ZZ ) -> ( ( ( M gcd ( ( K x. M ) + N ) ) || M /\ ( M gcd ( ( K x. M ) + N ) ) || ( ( K x. M ) + N ) ) -> ( M gcd ( ( K x. M ) + N ) ) || ( ( -u K x. M ) + ( 1 x. ( ( K x. M ) + N ) ) ) ) ) |
38 |
33 2 23 37
|
mp3an |
|- ( ( ( M gcd ( ( K x. M ) + N ) ) || M /\ ( M gcd ( ( K x. M ) + N ) ) || ( ( K x. M ) + N ) ) -> ( M gcd ( ( K x. M ) + N ) ) || ( ( -u K x. M ) + ( 1 x. ( ( K x. M ) + N ) ) ) ) |
39 |
29 38
|
ax-mp |
|- ( M gcd ( ( K x. M ) + N ) ) || ( ( -u K x. M ) + ( 1 x. ( ( K x. M ) + N ) ) ) |
40 |
|
zcn |
|- ( K e. ZZ -> K e. CC ) |
41 |
1 40
|
ax-mp |
|- K e. CC |
42 |
|
zcn |
|- ( M e. ZZ -> M e. CC ) |
43 |
2 42
|
ax-mp |
|- M e. CC |
44 |
41 43
|
mulneg1i |
|- ( -u K x. M ) = -u ( K x. M ) |
45 |
|
zcn |
|- ( ( ( K x. M ) + N ) e. ZZ -> ( ( K x. M ) + N ) e. CC ) |
46 |
23 45
|
ax-mp |
|- ( ( K x. M ) + N ) e. CC |
47 |
46
|
mulid2i |
|- ( 1 x. ( ( K x. M ) + N ) ) = ( ( K x. M ) + N ) |
48 |
44 47
|
oveq12i |
|- ( ( -u K x. M ) + ( 1 x. ( ( K x. M ) + N ) ) ) = ( -u ( K x. M ) + ( ( K x. M ) + N ) ) |
49 |
41 43
|
mulcli |
|- ( K x. M ) e. CC |
50 |
49
|
negcli |
|- -u ( K x. M ) e. CC |
51 |
49
|
negidi |
|- ( ( K x. M ) + -u ( K x. M ) ) = 0 |
52 |
49 50 51
|
addcomli |
|- ( -u ( K x. M ) + ( K x. M ) ) = 0 |
53 |
52
|
oveq1i |
|- ( ( -u ( K x. M ) + ( K x. M ) ) + N ) = ( 0 + N ) |
54 |
50 49 16
|
addassi |
|- ( ( -u ( K x. M ) + ( K x. M ) ) + N ) = ( -u ( K x. M ) + ( ( K x. M ) + N ) ) |
55 |
16
|
addid2i |
|- ( 0 + N ) = N |
56 |
53 54 55
|
3eqtr3i |
|- ( -u ( K x. M ) + ( ( K x. M ) + N ) ) = N |
57 |
48 56
|
eqtri |
|- ( ( -u K x. M ) + ( 1 x. ( ( K x. M ) + N ) ) ) = N |
58 |
39 57
|
breqtri |
|- ( M gcd ( ( K x. M ) + N ) ) || N |
59 |
|
dvdslegcd |
|- ( ( ( ( M gcd ( ( K x. M ) + N ) ) e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( ( ( M gcd ( ( K x. M ) + N ) ) || M /\ ( M gcd ( ( K x. M ) + N ) ) || N ) -> ( M gcd ( ( K x. M ) + N ) ) <_ ( M gcd N ) ) ) |
60 |
59
|
ex |
|- ( ( ( M gcd ( ( K x. M ) + N ) ) e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( -. ( M = 0 /\ N = 0 ) -> ( ( ( M gcd ( ( K x. M ) + N ) ) || M /\ ( M gcd ( ( K x. M ) + N ) ) || N ) -> ( M gcd ( ( K x. M ) + N ) ) <_ ( M gcd N ) ) ) ) |
61 |
33 2 3 60
|
mp3an |
|- ( -. ( M = 0 /\ N = 0 ) -> ( ( ( M gcd ( ( K x. M ) + N ) ) || M /\ ( M gcd ( ( K x. M ) + N ) ) || N ) -> ( M gcd ( ( K x. M ) + N ) ) <_ ( M gcd N ) ) ) |
62 |
30 58 61
|
mp2ani |
|- ( -. ( M = 0 /\ N = 0 ) -> ( M gcd ( ( K x. M ) + N ) ) <_ ( M gcd N ) ) |
63 |
27 62
|
anim12i |
|- ( ( -. ( M = 0 /\ ( ( K x. M ) + N ) = 0 ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( ( M gcd N ) <_ ( M gcd ( ( K x. M ) + N ) ) /\ ( M gcd ( ( K x. M ) + N ) ) <_ ( M gcd N ) ) ) |
64 |
9
|
zrei |
|- ( M gcd N ) e. RR |
65 |
33
|
zrei |
|- ( M gcd ( ( K x. M ) + N ) ) e. RR |
66 |
64 65
|
letri3i |
|- ( ( M gcd N ) = ( M gcd ( ( K x. M ) + N ) ) <-> ( ( M gcd N ) <_ ( M gcd ( ( K x. M ) + N ) ) /\ ( M gcd ( ( K x. M ) + N ) ) <_ ( M gcd N ) ) ) |
67 |
63 66
|
sylibr |
|- ( ( -. ( M = 0 /\ ( ( K x. M ) + N ) = 0 ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( M gcd N ) = ( M gcd ( ( K x. M ) + N ) ) ) |
68 |
|
pm4.57 |
|- ( -. ( -. ( M = 0 /\ ( ( K x. M ) + N ) = 0 ) /\ -. ( M = 0 /\ N = 0 ) ) <-> ( ( M = 0 /\ ( ( K x. M ) + N ) = 0 ) \/ ( M = 0 /\ N = 0 ) ) ) |
69 |
|
oveq2 |
|- ( M = 0 -> ( K x. M ) = ( K x. 0 ) ) |
70 |
41
|
mul01i |
|- ( K x. 0 ) = 0 |
71 |
69 70
|
eqtrdi |
|- ( M = 0 -> ( K x. M ) = 0 ) |
72 |
71
|
oveq1d |
|- ( M = 0 -> ( ( K x. M ) + N ) = ( 0 + N ) ) |
73 |
72 55
|
eqtrdi |
|- ( M = 0 -> ( ( K x. M ) + N ) = N ) |
74 |
73
|
eqeq1d |
|- ( M = 0 -> ( ( ( K x. M ) + N ) = 0 <-> N = 0 ) ) |
75 |
74
|
pm5.32i |
|- ( ( M = 0 /\ ( ( K x. M ) + N ) = 0 ) <-> ( M = 0 /\ N = 0 ) ) |
76 |
|
oveq12 |
|- ( ( M = 0 /\ N = 0 ) -> ( M gcd N ) = ( 0 gcd 0 ) ) |
77 |
|
oveq12 |
|- ( ( M = 0 /\ ( ( K x. M ) + N ) = 0 ) -> ( M gcd ( ( K x. M ) + N ) ) = ( 0 gcd 0 ) ) |
78 |
75 77
|
sylbir |
|- ( ( M = 0 /\ N = 0 ) -> ( M gcd ( ( K x. M ) + N ) ) = ( 0 gcd 0 ) ) |
79 |
76 78
|
eqtr4d |
|- ( ( M = 0 /\ N = 0 ) -> ( M gcd N ) = ( M gcd ( ( K x. M ) + N ) ) ) |
80 |
75 79
|
sylbi |
|- ( ( M = 0 /\ ( ( K x. M ) + N ) = 0 ) -> ( M gcd N ) = ( M gcd ( ( K x. M ) + N ) ) ) |
81 |
80 79
|
jaoi |
|- ( ( ( M = 0 /\ ( ( K x. M ) + N ) = 0 ) \/ ( M = 0 /\ N = 0 ) ) -> ( M gcd N ) = ( M gcd ( ( K x. M ) + N ) ) ) |
82 |
68 81
|
sylbi |
|- ( -. ( -. ( M = 0 /\ ( ( K x. M ) + N ) = 0 ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( M gcd N ) = ( M gcd ( ( K x. M ) + N ) ) ) |
83 |
67 82
|
pm2.61i |
|- ( M gcd N ) = ( M gcd ( ( K x. M ) + N ) ) |