| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq12 |
|- ( ( M = 0 /\ N = 0 ) -> ( M gcd N ) = ( 0 gcd 0 ) ) |
| 2 |
|
gcd0val |
|- ( 0 gcd 0 ) = 0 |
| 3 |
1 2
|
eqtrdi |
|- ( ( M = 0 /\ N = 0 ) -> ( M gcd N ) = 0 ) |
| 4 |
|
0nn0 |
|- 0 e. NN0 |
| 5 |
3 4
|
eqeltrdi |
|- ( ( M = 0 /\ N = 0 ) -> ( M gcd N ) e. NN0 ) |
| 6 |
5
|
adantl |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M = 0 /\ N = 0 ) ) -> ( M gcd N ) e. NN0 ) |
| 7 |
|
gcdn0cl |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( M gcd N ) e. NN ) |
| 8 |
7
|
nnnn0d |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( M gcd N ) e. NN0 ) |
| 9 |
6 8
|
pm2.61dan |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. NN0 ) |