Description: Closure of the gcd operator. (Contributed by Mario Carneiro, 29-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gcdcld.1 | |- ( ph -> M e. ZZ ) |
|
gcdcld.2 | |- ( ph -> N e. ZZ ) |
||
Assertion | gcdcld | |- ( ph -> ( M gcd N ) e. NN0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gcdcld.1 | |- ( ph -> M e. ZZ ) |
|
2 | gcdcld.2 | |- ( ph -> N e. ZZ ) |
|
3 | gcdcl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. NN0 ) |
|
4 | 1 2 3 | syl2anc | |- ( ph -> ( M gcd N ) e. NN0 ) |