Description: Closure of the gcd operator. (Contributed by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gcdcld.1 | |- ( ph -> M e. ZZ ) |
|
| gcdcld.2 | |- ( ph -> N e. ZZ ) |
||
| Assertion | gcdcld | |- ( ph -> ( M gcd N ) e. NN0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdcld.1 | |- ( ph -> M e. ZZ ) |
|
| 2 | gcdcld.2 | |- ( ph -> N e. ZZ ) |
|
| 3 | gcdcl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. NN0 ) |
|
| 4 | 1 2 3 | syl2anc | |- ( ph -> ( M gcd N ) e. NN0 ) |