Step |
Hyp |
Ref |
Expression |
1 |
|
gcdcllem2.1 |
|- S = { z e. ZZ | A. n e. { M , N } z || n } |
2 |
|
gcdcllem2.2 |
|- R = { z e. ZZ | ( z || M /\ z || N ) } |
3 |
|
breq1 |
|- ( z = x -> ( z || M <-> x || M ) ) |
4 |
|
breq1 |
|- ( z = x -> ( z || N <-> x || N ) ) |
5 |
3 4
|
anbi12d |
|- ( z = x -> ( ( z || M /\ z || N ) <-> ( x || M /\ x || N ) ) ) |
6 |
5 2
|
elrab2 |
|- ( x e. R <-> ( x e. ZZ /\ ( x || M /\ x || N ) ) ) |
7 |
|
breq1 |
|- ( z = x -> ( z || n <-> x || n ) ) |
8 |
7
|
ralbidv |
|- ( z = x -> ( A. n e. { M , N } z || n <-> A. n e. { M , N } x || n ) ) |
9 |
8 1
|
elrab2 |
|- ( x e. S <-> ( x e. ZZ /\ A. n e. { M , N } x || n ) ) |
10 |
|
breq2 |
|- ( n = M -> ( x || n <-> x || M ) ) |
11 |
|
breq2 |
|- ( n = N -> ( x || n <-> x || N ) ) |
12 |
10 11
|
ralprg |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( A. n e. { M , N } x || n <-> ( x || M /\ x || N ) ) ) |
13 |
12
|
anbi2d |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( x e. ZZ /\ A. n e. { M , N } x || n ) <-> ( x e. ZZ /\ ( x || M /\ x || N ) ) ) ) |
14 |
9 13
|
syl5bb |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( x e. S <-> ( x e. ZZ /\ ( x || M /\ x || N ) ) ) ) |
15 |
6 14
|
bitr4id |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( x e. R <-> x e. S ) ) |
16 |
15
|
eqrdv |
|- ( ( M e. ZZ /\ N e. ZZ ) -> R = S ) |