Step |
Hyp |
Ref |
Expression |
1 |
|
gcdcllem2.1 |
|- S = { z e. ZZ | A. n e. { M , N } z || n } |
2 |
|
gcdcllem2.2 |
|- R = { z e. ZZ | ( z || M /\ z || N ) } |
3 |
2
|
ssrab3 |
|- R C_ ZZ |
4 |
|
prssi |
|- ( ( M e. ZZ /\ N e. ZZ ) -> { M , N } C_ ZZ ) |
5 |
|
neorian |
|- ( ( M =/= 0 \/ N =/= 0 ) <-> -. ( M = 0 /\ N = 0 ) ) |
6 |
|
prid1g |
|- ( M e. ZZ -> M e. { M , N } ) |
7 |
|
neeq1 |
|- ( n = M -> ( n =/= 0 <-> M =/= 0 ) ) |
8 |
7
|
rspcev |
|- ( ( M e. { M , N } /\ M =/= 0 ) -> E. n e. { M , N } n =/= 0 ) |
9 |
6 8
|
sylan |
|- ( ( M e. ZZ /\ M =/= 0 ) -> E. n e. { M , N } n =/= 0 ) |
10 |
9
|
adantlr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M =/= 0 ) -> E. n e. { M , N } n =/= 0 ) |
11 |
|
prid2g |
|- ( N e. ZZ -> N e. { M , N } ) |
12 |
|
neeq1 |
|- ( n = N -> ( n =/= 0 <-> N =/= 0 ) ) |
13 |
12
|
rspcev |
|- ( ( N e. { M , N } /\ N =/= 0 ) -> E. n e. { M , N } n =/= 0 ) |
14 |
11 13
|
sylan |
|- ( ( N e. ZZ /\ N =/= 0 ) -> E. n e. { M , N } n =/= 0 ) |
15 |
14
|
adantll |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ N =/= 0 ) -> E. n e. { M , N } n =/= 0 ) |
16 |
10 15
|
jaodan |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 \/ N =/= 0 ) ) -> E. n e. { M , N } n =/= 0 ) |
17 |
5 16
|
sylan2br |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> E. n e. { M , N } n =/= 0 ) |
18 |
1
|
gcdcllem1 |
|- ( ( { M , N } C_ ZZ /\ E. n e. { M , N } n =/= 0 ) -> ( S =/= (/) /\ E. x e. ZZ A. y e. S y <_ x ) ) |
19 |
4 17 18
|
syl2an2r |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( S =/= (/) /\ E. x e. ZZ A. y e. S y <_ x ) ) |
20 |
1 2
|
gcdcllem2 |
|- ( ( M e. ZZ /\ N e. ZZ ) -> R = S ) |
21 |
|
neeq1 |
|- ( R = S -> ( R =/= (/) <-> S =/= (/) ) ) |
22 |
|
raleq |
|- ( R = S -> ( A. y e. R y <_ x <-> A. y e. S y <_ x ) ) |
23 |
22
|
rexbidv |
|- ( R = S -> ( E. x e. ZZ A. y e. R y <_ x <-> E. x e. ZZ A. y e. S y <_ x ) ) |
24 |
21 23
|
anbi12d |
|- ( R = S -> ( ( R =/= (/) /\ E. x e. ZZ A. y e. R y <_ x ) <-> ( S =/= (/) /\ E. x e. ZZ A. y e. S y <_ x ) ) ) |
25 |
20 24
|
syl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( R =/= (/) /\ E. x e. ZZ A. y e. R y <_ x ) <-> ( S =/= (/) /\ E. x e. ZZ A. y e. S y <_ x ) ) ) |
26 |
25
|
adantr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( ( R =/= (/) /\ E. x e. ZZ A. y e. R y <_ x ) <-> ( S =/= (/) /\ E. x e. ZZ A. y e. S y <_ x ) ) ) |
27 |
19 26
|
mpbird |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( R =/= (/) /\ E. x e. ZZ A. y e. R y <_ x ) ) |
28 |
|
suprzcl2 |
|- ( ( R C_ ZZ /\ R =/= (/) /\ E. x e. ZZ A. y e. R y <_ x ) -> sup ( R , RR , < ) e. R ) |
29 |
3 28
|
mp3an1 |
|- ( ( R =/= (/) /\ E. x e. ZZ A. y e. R y <_ x ) -> sup ( R , RR , < ) e. R ) |
30 |
27 29
|
syl |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> sup ( R , RR , < ) e. R ) |
31 |
3 30
|
sselid |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> sup ( R , RR , < ) e. ZZ ) |
32 |
27
|
simprd |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> E. x e. ZZ A. y e. R y <_ x ) |
33 |
|
1dvds |
|- ( M e. ZZ -> 1 || M ) |
34 |
|
1dvds |
|- ( N e. ZZ -> 1 || N ) |
35 |
33 34
|
anim12i |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( 1 || M /\ 1 || N ) ) |
36 |
|
1z |
|- 1 e. ZZ |
37 |
|
breq1 |
|- ( z = 1 -> ( z || M <-> 1 || M ) ) |
38 |
|
breq1 |
|- ( z = 1 -> ( z || N <-> 1 || N ) ) |
39 |
37 38
|
anbi12d |
|- ( z = 1 -> ( ( z || M /\ z || N ) <-> ( 1 || M /\ 1 || N ) ) ) |
40 |
39 2
|
elrab2 |
|- ( 1 e. R <-> ( 1 e. ZZ /\ ( 1 || M /\ 1 || N ) ) ) |
41 |
36 40
|
mpbiran |
|- ( 1 e. R <-> ( 1 || M /\ 1 || N ) ) |
42 |
35 41
|
sylibr |
|- ( ( M e. ZZ /\ N e. ZZ ) -> 1 e. R ) |
43 |
42
|
adantr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> 1 e. R ) |
44 |
|
suprzub |
|- ( ( R C_ ZZ /\ E. x e. ZZ A. y e. R y <_ x /\ 1 e. R ) -> 1 <_ sup ( R , RR , < ) ) |
45 |
3 32 43 44
|
mp3an2i |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> 1 <_ sup ( R , RR , < ) ) |
46 |
|
elnnz1 |
|- ( sup ( R , RR , < ) e. NN <-> ( sup ( R , RR , < ) e. ZZ /\ 1 <_ sup ( R , RR , < ) ) ) |
47 |
31 45 46
|
sylanbrc |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> sup ( R , RR , < ) e. NN ) |
48 |
|
breq1 |
|- ( x = sup ( R , RR , < ) -> ( x || M <-> sup ( R , RR , < ) || M ) ) |
49 |
|
breq1 |
|- ( x = sup ( R , RR , < ) -> ( x || N <-> sup ( R , RR , < ) || N ) ) |
50 |
48 49
|
anbi12d |
|- ( x = sup ( R , RR , < ) -> ( ( x || M /\ x || N ) <-> ( sup ( R , RR , < ) || M /\ sup ( R , RR , < ) || N ) ) ) |
51 |
|
breq1 |
|- ( z = x -> ( z || M <-> x || M ) ) |
52 |
|
breq1 |
|- ( z = x -> ( z || N <-> x || N ) ) |
53 |
51 52
|
anbi12d |
|- ( z = x -> ( ( z || M /\ z || N ) <-> ( x || M /\ x || N ) ) ) |
54 |
53
|
cbvrabv |
|- { z e. ZZ | ( z || M /\ z || N ) } = { x e. ZZ | ( x || M /\ x || N ) } |
55 |
2 54
|
eqtri |
|- R = { x e. ZZ | ( x || M /\ x || N ) } |
56 |
50 55
|
elrab2 |
|- ( sup ( R , RR , < ) e. R <-> ( sup ( R , RR , < ) e. ZZ /\ ( sup ( R , RR , < ) || M /\ sup ( R , RR , < ) || N ) ) ) |
57 |
30 56
|
sylib |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( sup ( R , RR , < ) e. ZZ /\ ( sup ( R , RR , < ) || M /\ sup ( R , RR , < ) || N ) ) ) |
58 |
57
|
simprd |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( sup ( R , RR , < ) || M /\ sup ( R , RR , < ) || N ) ) |
59 |
|
breq1 |
|- ( z = K -> ( z || M <-> K || M ) ) |
60 |
|
breq1 |
|- ( z = K -> ( z || N <-> K || N ) ) |
61 |
59 60
|
anbi12d |
|- ( z = K -> ( ( z || M /\ z || N ) <-> ( K || M /\ K || N ) ) ) |
62 |
61 2
|
elrab2 |
|- ( K e. R <-> ( K e. ZZ /\ ( K || M /\ K || N ) ) ) |
63 |
62
|
biimpri |
|- ( ( K e. ZZ /\ ( K || M /\ K || N ) ) -> K e. R ) |
64 |
63
|
3impb |
|- ( ( K e. ZZ /\ K || M /\ K || N ) -> K e. R ) |
65 |
|
suprzub |
|- ( ( R C_ ZZ /\ E. x e. ZZ A. y e. R y <_ x /\ K e. R ) -> K <_ sup ( R , RR , < ) ) |
66 |
65
|
3expia |
|- ( ( R C_ ZZ /\ E. x e. ZZ A. y e. R y <_ x ) -> ( K e. R -> K <_ sup ( R , RR , < ) ) ) |
67 |
3 66
|
mpan |
|- ( E. x e. ZZ A. y e. R y <_ x -> ( K e. R -> K <_ sup ( R , RR , < ) ) ) |
68 |
32 64 67
|
syl2im |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( ( K e. ZZ /\ K || M /\ K || N ) -> K <_ sup ( R , RR , < ) ) ) |
69 |
47 58 68
|
3jca |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( sup ( R , RR , < ) e. NN /\ ( sup ( R , RR , < ) || M /\ sup ( R , RR , < ) || N ) /\ ( ( K e. ZZ /\ K || M /\ K || N ) -> K <_ sup ( R , RR , < ) ) ) ) |