Step |
Hyp |
Ref |
Expression |
1 |
|
ancom |
|- ( ( M = 0 /\ N = 0 ) <-> ( N = 0 /\ M = 0 ) ) |
2 |
|
ancom |
|- ( ( n || M /\ n || N ) <-> ( n || N /\ n || M ) ) |
3 |
2
|
rabbii |
|- { n e. ZZ | ( n || M /\ n || N ) } = { n e. ZZ | ( n || N /\ n || M ) } |
4 |
3
|
supeq1i |
|- sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) = sup ( { n e. ZZ | ( n || N /\ n || M ) } , RR , < ) |
5 |
1 4
|
ifbieq2i |
|- if ( ( M = 0 /\ N = 0 ) , 0 , sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) = if ( ( N = 0 /\ M = 0 ) , 0 , sup ( { n e. ZZ | ( n || N /\ n || M ) } , RR , < ) ) |
6 |
|
gcdval |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) = if ( ( M = 0 /\ N = 0 ) , 0 , sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) ) |
7 |
|
gcdval |
|- ( ( N e. ZZ /\ M e. ZZ ) -> ( N gcd M ) = if ( ( N = 0 /\ M = 0 ) , 0 , sup ( { n e. ZZ | ( n || N /\ n || M ) } , RR , < ) ) ) |
8 |
7
|
ancoms |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( N gcd M ) = if ( ( N = 0 /\ M = 0 ) , 0 , sup ( { n e. ZZ | ( n || N /\ n || M ) } , RR , < ) ) ) |
9 |
5 6 8
|
3eqtr4a |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) = ( N gcd M ) ) |