Description: The gcd operator is commutative, deduction version. (Contributed by SN, 24-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gcdcomd.m | |- ( ph -> M e. ZZ ) |
|
| gcdcomd.n | |- ( ph -> N e. ZZ ) |
||
| Assertion | gcdcomd | |- ( ph -> ( M gcd N ) = ( N gcd M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdcomd.m | |- ( ph -> M e. ZZ ) |
|
| 2 | gcdcomd.n | |- ( ph -> N e. ZZ ) |
|
| 3 | gcdcom | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) = ( N gcd M ) ) |
|
| 4 | 1 2 3 | syl2anc | |- ( ph -> ( M gcd N ) = ( N gcd M ) ) |