Step |
Hyp |
Ref |
Expression |
1 |
|
0z |
|- 0 e. ZZ |
2 |
|
dvds0 |
|- ( 0 e. ZZ -> 0 || 0 ) |
3 |
1 2
|
ax-mp |
|- 0 || 0 |
4 |
|
breq2 |
|- ( M = 0 -> ( 0 || M <-> 0 || 0 ) ) |
5 |
|
breq2 |
|- ( N = 0 -> ( 0 || N <-> 0 || 0 ) ) |
6 |
4 5
|
bi2anan9 |
|- ( ( M = 0 /\ N = 0 ) -> ( ( 0 || M /\ 0 || N ) <-> ( 0 || 0 /\ 0 || 0 ) ) ) |
7 |
|
anidm |
|- ( ( 0 || 0 /\ 0 || 0 ) <-> 0 || 0 ) |
8 |
6 7
|
bitrdi |
|- ( ( M = 0 /\ N = 0 ) -> ( ( 0 || M /\ 0 || N ) <-> 0 || 0 ) ) |
9 |
3 8
|
mpbiri |
|- ( ( M = 0 /\ N = 0 ) -> ( 0 || M /\ 0 || N ) ) |
10 |
|
oveq12 |
|- ( ( M = 0 /\ N = 0 ) -> ( M gcd N ) = ( 0 gcd 0 ) ) |
11 |
|
gcd0val |
|- ( 0 gcd 0 ) = 0 |
12 |
10 11
|
eqtrdi |
|- ( ( M = 0 /\ N = 0 ) -> ( M gcd N ) = 0 ) |
13 |
12
|
breq1d |
|- ( ( M = 0 /\ N = 0 ) -> ( ( M gcd N ) || M <-> 0 || M ) ) |
14 |
12
|
breq1d |
|- ( ( M = 0 /\ N = 0 ) -> ( ( M gcd N ) || N <-> 0 || N ) ) |
15 |
13 14
|
anbi12d |
|- ( ( M = 0 /\ N = 0 ) -> ( ( ( M gcd N ) || M /\ ( M gcd N ) || N ) <-> ( 0 || M /\ 0 || N ) ) ) |
16 |
9 15
|
mpbird |
|- ( ( M = 0 /\ N = 0 ) -> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) |
17 |
16
|
adantl |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M = 0 /\ N = 0 ) ) -> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) |
18 |
|
eqid |
|- { n e. ZZ | A. z e. { M , N } n || z } = { n e. ZZ | A. z e. { M , N } n || z } |
19 |
|
eqid |
|- { n e. ZZ | ( n || M /\ n || N ) } = { n e. ZZ | ( n || M /\ n || N ) } |
20 |
18 19
|
gcdcllem3 |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) e. NN /\ ( sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) || M /\ sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) || N ) /\ ( ( K e. ZZ /\ K || M /\ K || N ) -> K <_ sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) ) ) |
21 |
20
|
simp2d |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) || M /\ sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) || N ) ) |
22 |
|
gcdn0val |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( M gcd N ) = sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) |
23 |
22
|
breq1d |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( ( M gcd N ) || M <-> sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) || M ) ) |
24 |
22
|
breq1d |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( ( M gcd N ) || N <-> sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) || N ) ) |
25 |
23 24
|
anbi12d |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( ( ( M gcd N ) || M /\ ( M gcd N ) || N ) <-> ( sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) || M /\ sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) || N ) ) ) |
26 |
21 25
|
mpbird |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) |
27 |
17 26
|
pm2.61dan |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) |