| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gcdcl |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. NN0 ) | 
						
							| 2 | 1 | nn0zd |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. ZZ ) | 
						
							| 3 |  | simpl |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> M e. ZZ ) | 
						
							| 4 |  | lcmcl |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) e. NN0 ) | 
						
							| 5 | 4 | nn0zd |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) e. ZZ ) | 
						
							| 6 |  | gcddvds |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) | 
						
							| 7 | 6 | simpld |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) || M ) | 
						
							| 8 |  | dvdslcm |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M || ( M lcm N ) /\ N || ( M lcm N ) ) ) | 
						
							| 9 | 8 | simpld |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> M || ( M lcm N ) ) | 
						
							| 10 | 2 3 5 7 9 | dvdstrd |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) || ( M lcm N ) ) |