Step |
Hyp |
Ref |
Expression |
1 |
|
gcdcl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. NN0 ) |
2 |
1
|
nn0zd |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. ZZ ) |
3 |
|
simpl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> M e. ZZ ) |
4 |
|
lcmcl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) e. NN0 ) |
5 |
4
|
nn0zd |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) e. ZZ ) |
6 |
|
gcddvds |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) |
7 |
6
|
simpld |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) || M ) |
8 |
|
dvdslcm |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || ( M lcm N ) /\ N || ( M lcm N ) ) ) |
9 |
8
|
simpld |
|- ( ( M e. ZZ /\ N e. ZZ ) -> M || ( M lcm N ) ) |
10 |
2 3 5 7 9
|
dvdstrd |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) || ( M lcm N ) ) |