Step |
Hyp |
Ref |
Expression |
1 |
|
gcdn0cl |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( M gcd N ) e. NN ) |
2 |
1
|
nnne0d |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( M gcd N ) =/= 0 ) |
3 |
2
|
ex |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( -. ( M = 0 /\ N = 0 ) -> ( M gcd N ) =/= 0 ) ) |
4 |
3
|
necon4bd |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) = 0 -> ( M = 0 /\ N = 0 ) ) ) |
5 |
|
oveq12 |
|- ( ( M = 0 /\ N = 0 ) -> ( M gcd N ) = ( 0 gcd 0 ) ) |
6 |
|
gcd0val |
|- ( 0 gcd 0 ) = 0 |
7 |
5 6
|
eqtrdi |
|- ( ( M = 0 /\ N = 0 ) -> ( M gcd N ) = 0 ) |
8 |
4 7
|
impbid1 |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) = 0 <-> ( M = 0 /\ N = 0 ) ) ) |