Step |
Hyp |
Ref |
Expression |
1 |
|
gcdval |
|- ( ( x e. ZZ /\ y e. ZZ ) -> ( x gcd y ) = if ( ( x = 0 /\ y = 0 ) , 0 , sup ( { n e. ZZ | ( n || x /\ n || y ) } , RR , < ) ) ) |
2 |
|
gcdcl |
|- ( ( x e. ZZ /\ y e. ZZ ) -> ( x gcd y ) e. NN0 ) |
3 |
1 2
|
eqeltrrd |
|- ( ( x e. ZZ /\ y e. ZZ ) -> if ( ( x = 0 /\ y = 0 ) , 0 , sup ( { n e. ZZ | ( n || x /\ n || y ) } , RR , < ) ) e. NN0 ) |
4 |
3
|
rgen2 |
|- A. x e. ZZ A. y e. ZZ if ( ( x = 0 /\ y = 0 ) , 0 , sup ( { n e. ZZ | ( n || x /\ n || y ) } , RR , < ) ) e. NN0 |
5 |
|
df-gcd |
|- gcd = ( x e. ZZ , y e. ZZ |-> if ( ( x = 0 /\ y = 0 ) , 0 , sup ( { n e. ZZ | ( n || x /\ n || y ) } , RR , < ) ) ) |
6 |
5
|
fmpo |
|- ( A. x e. ZZ A. y e. ZZ if ( ( x = 0 /\ y = 0 ) , 0 , sup ( { n e. ZZ | ( n || x /\ n || y ) } , RR , < ) ) e. NN0 <-> gcd : ( ZZ X. ZZ ) --> NN0 ) |
7 |
4 6
|
mpbi |
|- gcd : ( ZZ X. ZZ ) --> NN0 |