| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gcdi.1 |  |-  K e. NN0 | 
						
							| 2 |  | gcdi.2 |  |-  R e. NN0 | 
						
							| 3 |  | gcdi.3 |  |-  N e. NN0 | 
						
							| 4 |  | gcdi.5 |  |-  ( N gcd R ) = G | 
						
							| 5 |  | gcdi.4 |  |-  ( ( K x. N ) + R ) = M | 
						
							| 6 | 1 3 | nn0mulcli |  |-  ( K x. N ) e. NN0 | 
						
							| 7 | 6 | nn0cni |  |-  ( K x. N ) e. CC | 
						
							| 8 | 2 | nn0cni |  |-  R e. CC | 
						
							| 9 | 7 8 5 | addcomli |  |-  ( R + ( K x. N ) ) = M | 
						
							| 10 | 9 | oveq2i |  |-  ( N gcd ( R + ( K x. N ) ) ) = ( N gcd M ) | 
						
							| 11 | 1 | nn0zi |  |-  K e. ZZ | 
						
							| 12 | 3 | nn0zi |  |-  N e. ZZ | 
						
							| 13 | 2 | nn0zi |  |-  R e. ZZ | 
						
							| 14 |  | gcdaddm |  |-  ( ( K e. ZZ /\ N e. ZZ /\ R e. ZZ ) -> ( N gcd R ) = ( N gcd ( R + ( K x. N ) ) ) ) | 
						
							| 15 | 11 12 13 14 | mp3an |  |-  ( N gcd R ) = ( N gcd ( R + ( K x. N ) ) ) | 
						
							| 16 | 1 3 2 | numcl |  |-  ( ( K x. N ) + R ) e. NN0 | 
						
							| 17 | 5 16 | eqeltrri |  |-  M e. NN0 | 
						
							| 18 | 17 | nn0zi |  |-  M e. ZZ | 
						
							| 19 |  | gcdcom |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) = ( N gcd M ) ) | 
						
							| 20 | 18 12 19 | mp2an |  |-  ( M gcd N ) = ( N gcd M ) | 
						
							| 21 | 10 15 20 | 3eqtr4i |  |-  ( N gcd R ) = ( M gcd N ) | 
						
							| 22 | 21 4 | eqtr3i |  |-  ( M gcd N ) = G |