Step |
Hyp |
Ref |
Expression |
1 |
|
gcdi.1 |
|- K e. NN0 |
2 |
|
gcdi.2 |
|- R e. NN0 |
3 |
|
gcdi.3 |
|- N e. NN0 |
4 |
|
gcdi.5 |
|- ( N gcd R ) = G |
5 |
|
gcdi.4 |
|- ( ( K x. N ) + R ) = M |
6 |
1 3
|
nn0mulcli |
|- ( K x. N ) e. NN0 |
7 |
6
|
nn0cni |
|- ( K x. N ) e. CC |
8 |
2
|
nn0cni |
|- R e. CC |
9 |
7 8 5
|
addcomli |
|- ( R + ( K x. N ) ) = M |
10 |
9
|
oveq2i |
|- ( N gcd ( R + ( K x. N ) ) ) = ( N gcd M ) |
11 |
1
|
nn0zi |
|- K e. ZZ |
12 |
3
|
nn0zi |
|- N e. ZZ |
13 |
2
|
nn0zi |
|- R e. ZZ |
14 |
|
gcdaddm |
|- ( ( K e. ZZ /\ N e. ZZ /\ R e. ZZ ) -> ( N gcd R ) = ( N gcd ( R + ( K x. N ) ) ) ) |
15 |
11 12 13 14
|
mp3an |
|- ( N gcd R ) = ( N gcd ( R + ( K x. N ) ) ) |
16 |
1 3 2
|
numcl |
|- ( ( K x. N ) + R ) e. NN0 |
17 |
5 16
|
eqeltrri |
|- M e. NN0 |
18 |
17
|
nn0zi |
|- M e. ZZ |
19 |
|
gcdcom |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) = ( N gcd M ) ) |
20 |
18 12 19
|
mp2an |
|- ( M gcd N ) = ( N gcd M ) |
21 |
10 15 20
|
3eqtr4i |
|- ( N gcd R ) = ( M gcd N ) |
22 |
21 4
|
eqtr3i |
|- ( M gcd N ) = G |