Step |
Hyp |
Ref |
Expression |
1 |
|
1z |
|- 1 e. ZZ |
2 |
|
0z |
|- 0 e. ZZ |
3 |
|
gcdaddm |
|- ( ( 1 e. ZZ /\ N e. ZZ /\ 0 e. ZZ ) -> ( N gcd 0 ) = ( N gcd ( 0 + ( 1 x. N ) ) ) ) |
4 |
1 2 3
|
mp3an13 |
|- ( N e. ZZ -> ( N gcd 0 ) = ( N gcd ( 0 + ( 1 x. N ) ) ) ) |
5 |
|
gcdid0 |
|- ( N e. ZZ -> ( N gcd 0 ) = ( abs ` N ) ) |
6 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
7 |
|
mulid2 |
|- ( N e. CC -> ( 1 x. N ) = N ) |
8 |
7
|
oveq2d |
|- ( N e. CC -> ( 0 + ( 1 x. N ) ) = ( 0 + N ) ) |
9 |
|
addid2 |
|- ( N e. CC -> ( 0 + N ) = N ) |
10 |
8 9
|
eqtrd |
|- ( N e. CC -> ( 0 + ( 1 x. N ) ) = N ) |
11 |
6 10
|
syl |
|- ( N e. ZZ -> ( 0 + ( 1 x. N ) ) = N ) |
12 |
11
|
oveq2d |
|- ( N e. ZZ -> ( N gcd ( 0 + ( 1 x. N ) ) ) = ( N gcd N ) ) |
13 |
4 5 12
|
3eqtr3rd |
|- ( N e. ZZ -> ( N gcd N ) = ( abs ` N ) ) |