| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1z |  |-  1 e. ZZ | 
						
							| 2 |  | 0z |  |-  0 e. ZZ | 
						
							| 3 |  | gcdaddm |  |-  ( ( 1 e. ZZ /\ N e. ZZ /\ 0 e. ZZ ) -> ( N gcd 0 ) = ( N gcd ( 0 + ( 1 x. N ) ) ) ) | 
						
							| 4 | 1 2 3 | mp3an13 |  |-  ( N e. ZZ -> ( N gcd 0 ) = ( N gcd ( 0 + ( 1 x. N ) ) ) ) | 
						
							| 5 |  | gcdid0 |  |-  ( N e. ZZ -> ( N gcd 0 ) = ( abs ` N ) ) | 
						
							| 6 |  | zcn |  |-  ( N e. ZZ -> N e. CC ) | 
						
							| 7 |  | mullid |  |-  ( N e. CC -> ( 1 x. N ) = N ) | 
						
							| 8 | 7 | oveq2d |  |-  ( N e. CC -> ( 0 + ( 1 x. N ) ) = ( 0 + N ) ) | 
						
							| 9 |  | addlid |  |-  ( N e. CC -> ( 0 + N ) = N ) | 
						
							| 10 | 8 9 | eqtrd |  |-  ( N e. CC -> ( 0 + ( 1 x. N ) ) = N ) | 
						
							| 11 | 6 10 | syl |  |-  ( N e. ZZ -> ( 0 + ( 1 x. N ) ) = N ) | 
						
							| 12 | 11 | oveq2d |  |-  ( N e. ZZ -> ( N gcd ( 0 + ( 1 x. N ) ) ) = ( N gcd N ) ) | 
						
							| 13 | 4 5 12 | 3eqtr3rd |  |-  ( N e. ZZ -> ( N gcd N ) = ( abs ` N ) ) |