Description: The gcd of an integer and 0 is the integer's absolute value. Theorem 1.4(d)2 in ApostolNT p. 16. (Contributed by Paul Chapman, 31-Mar-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | gcdid0 | |- ( N e. ZZ -> ( N gcd 0 ) = ( abs ` N ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z | |- 0 e. ZZ |
|
2 | gcdcom | |- ( ( 0 e. ZZ /\ N e. ZZ ) -> ( 0 gcd N ) = ( N gcd 0 ) ) |
|
3 | 1 2 | mpan | |- ( N e. ZZ -> ( 0 gcd N ) = ( N gcd 0 ) ) |
4 | gcd0id | |- ( N e. ZZ -> ( 0 gcd N ) = ( abs ` N ) ) |
|
5 | 3 4 | eqtr3d | |- ( N e. ZZ -> ( N gcd 0 ) = ( abs ` N ) ) |