| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gcdi.1 |  |-  K e. NN0 | 
						
							| 2 |  | gcdi.2 |  |-  R e. NN0 | 
						
							| 3 |  | gcdmodi.3 |  |-  N e. NN | 
						
							| 4 |  | gcdmodi.4 |  |-  ( K mod N ) = ( R mod N ) | 
						
							| 5 |  | gcdmodi.5 |  |-  ( N gcd R ) = G | 
						
							| 6 | 4 | oveq1i |  |-  ( ( K mod N ) gcd N ) = ( ( R mod N ) gcd N ) | 
						
							| 7 | 1 | nn0zi |  |-  K e. ZZ | 
						
							| 8 |  | modgcd |  |-  ( ( K e. ZZ /\ N e. NN ) -> ( ( K mod N ) gcd N ) = ( K gcd N ) ) | 
						
							| 9 | 7 3 8 | mp2an |  |-  ( ( K mod N ) gcd N ) = ( K gcd N ) | 
						
							| 10 | 2 | nn0zi |  |-  R e. ZZ | 
						
							| 11 |  | modgcd |  |-  ( ( R e. ZZ /\ N e. NN ) -> ( ( R mod N ) gcd N ) = ( R gcd N ) ) | 
						
							| 12 | 10 3 11 | mp2an |  |-  ( ( R mod N ) gcd N ) = ( R gcd N ) | 
						
							| 13 | 6 9 12 | 3eqtr3i |  |-  ( K gcd N ) = ( R gcd N ) | 
						
							| 14 | 3 | nnzi |  |-  N e. ZZ | 
						
							| 15 |  | gcdcom |  |-  ( ( R e. ZZ /\ N e. ZZ ) -> ( R gcd N ) = ( N gcd R ) ) | 
						
							| 16 | 10 14 15 | mp2an |  |-  ( R gcd N ) = ( N gcd R ) | 
						
							| 17 | 13 16 5 | 3eqtri |  |-  ( K gcd N ) = G |