Metamath Proof Explorer


Theorem gcdmultiple

Description: The GCD of a multiple of a positive integer is the positive integer itself. (Contributed by Scott Fenton, 12-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014) (Proof shortened by AV, 12-Jan-2023)

Ref Expression
Assertion gcdmultiple
|- ( ( M e. NN /\ N e. NN ) -> ( M gcd ( M x. N ) ) = M )

Proof

Step Hyp Ref Expression
1 nnz
 |-  ( N e. NN -> N e. ZZ )
2 gcdmultiplez
 |-  ( ( M e. NN /\ N e. ZZ ) -> ( M gcd ( M x. N ) ) = M )
3 1 2 sylan2
 |-  ( ( M e. NN /\ N e. NN ) -> ( M gcd ( M x. N ) ) = M )