Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( k = 1 -> ( M x. k ) = ( M x. 1 ) ) |
2 |
1
|
oveq2d |
|- ( k = 1 -> ( M gcd ( M x. k ) ) = ( M gcd ( M x. 1 ) ) ) |
3 |
2
|
eqeq1d |
|- ( k = 1 -> ( ( M gcd ( M x. k ) ) = M <-> ( M gcd ( M x. 1 ) ) = M ) ) |
4 |
3
|
imbi2d |
|- ( k = 1 -> ( ( M e. NN -> ( M gcd ( M x. k ) ) = M ) <-> ( M e. NN -> ( M gcd ( M x. 1 ) ) = M ) ) ) |
5 |
|
oveq2 |
|- ( k = n -> ( M x. k ) = ( M x. n ) ) |
6 |
5
|
oveq2d |
|- ( k = n -> ( M gcd ( M x. k ) ) = ( M gcd ( M x. n ) ) ) |
7 |
6
|
eqeq1d |
|- ( k = n -> ( ( M gcd ( M x. k ) ) = M <-> ( M gcd ( M x. n ) ) = M ) ) |
8 |
7
|
imbi2d |
|- ( k = n -> ( ( M e. NN -> ( M gcd ( M x. k ) ) = M ) <-> ( M e. NN -> ( M gcd ( M x. n ) ) = M ) ) ) |
9 |
|
oveq2 |
|- ( k = ( n + 1 ) -> ( M x. k ) = ( M x. ( n + 1 ) ) ) |
10 |
9
|
oveq2d |
|- ( k = ( n + 1 ) -> ( M gcd ( M x. k ) ) = ( M gcd ( M x. ( n + 1 ) ) ) ) |
11 |
10
|
eqeq1d |
|- ( k = ( n + 1 ) -> ( ( M gcd ( M x. k ) ) = M <-> ( M gcd ( M x. ( n + 1 ) ) ) = M ) ) |
12 |
11
|
imbi2d |
|- ( k = ( n + 1 ) -> ( ( M e. NN -> ( M gcd ( M x. k ) ) = M ) <-> ( M e. NN -> ( M gcd ( M x. ( n + 1 ) ) ) = M ) ) ) |
13 |
|
oveq2 |
|- ( k = N -> ( M x. k ) = ( M x. N ) ) |
14 |
13
|
oveq2d |
|- ( k = N -> ( M gcd ( M x. k ) ) = ( M gcd ( M x. N ) ) ) |
15 |
14
|
eqeq1d |
|- ( k = N -> ( ( M gcd ( M x. k ) ) = M <-> ( M gcd ( M x. N ) ) = M ) ) |
16 |
15
|
imbi2d |
|- ( k = N -> ( ( M e. NN -> ( M gcd ( M x. k ) ) = M ) <-> ( M e. NN -> ( M gcd ( M x. N ) ) = M ) ) ) |
17 |
|
nncn |
|- ( M e. NN -> M e. CC ) |
18 |
17
|
mulid1d |
|- ( M e. NN -> ( M x. 1 ) = M ) |
19 |
18
|
oveq2d |
|- ( M e. NN -> ( M gcd ( M x. 1 ) ) = ( M gcd M ) ) |
20 |
|
nnz |
|- ( M e. NN -> M e. ZZ ) |
21 |
|
gcdid |
|- ( M e. ZZ -> ( M gcd M ) = ( abs ` M ) ) |
22 |
20 21
|
syl |
|- ( M e. NN -> ( M gcd M ) = ( abs ` M ) ) |
23 |
|
nnre |
|- ( M e. NN -> M e. RR ) |
24 |
|
nnnn0 |
|- ( M e. NN -> M e. NN0 ) |
25 |
24
|
nn0ge0d |
|- ( M e. NN -> 0 <_ M ) |
26 |
23 25
|
absidd |
|- ( M e. NN -> ( abs ` M ) = M ) |
27 |
22 26
|
eqtrd |
|- ( M e. NN -> ( M gcd M ) = M ) |
28 |
19 27
|
eqtrd |
|- ( M e. NN -> ( M gcd ( M x. 1 ) ) = M ) |
29 |
|
1z |
|- 1 e. ZZ |
30 |
|
nnz |
|- ( n e. NN -> n e. ZZ ) |
31 |
|
zmulcl |
|- ( ( M e. ZZ /\ n e. ZZ ) -> ( M x. n ) e. ZZ ) |
32 |
20 30 31
|
syl2an |
|- ( ( M e. NN /\ n e. NN ) -> ( M x. n ) e. ZZ ) |
33 |
|
gcdaddm |
|- ( ( 1 e. ZZ /\ M e. ZZ /\ ( M x. n ) e. ZZ ) -> ( M gcd ( M x. n ) ) = ( M gcd ( ( M x. n ) + ( 1 x. M ) ) ) ) |
34 |
29 20 32 33
|
mp3an2ani |
|- ( ( M e. NN /\ n e. NN ) -> ( M gcd ( M x. n ) ) = ( M gcd ( ( M x. n ) + ( 1 x. M ) ) ) ) |
35 |
|
nncn |
|- ( n e. NN -> n e. CC ) |
36 |
|
ax-1cn |
|- 1 e. CC |
37 |
|
adddi |
|- ( ( M e. CC /\ n e. CC /\ 1 e. CC ) -> ( M x. ( n + 1 ) ) = ( ( M x. n ) + ( M x. 1 ) ) ) |
38 |
36 37
|
mp3an3 |
|- ( ( M e. CC /\ n e. CC ) -> ( M x. ( n + 1 ) ) = ( ( M x. n ) + ( M x. 1 ) ) ) |
39 |
|
mulcom |
|- ( ( M e. CC /\ 1 e. CC ) -> ( M x. 1 ) = ( 1 x. M ) ) |
40 |
36 39
|
mpan2 |
|- ( M e. CC -> ( M x. 1 ) = ( 1 x. M ) ) |
41 |
40
|
adantr |
|- ( ( M e. CC /\ n e. CC ) -> ( M x. 1 ) = ( 1 x. M ) ) |
42 |
41
|
oveq2d |
|- ( ( M e. CC /\ n e. CC ) -> ( ( M x. n ) + ( M x. 1 ) ) = ( ( M x. n ) + ( 1 x. M ) ) ) |
43 |
38 42
|
eqtrd |
|- ( ( M e. CC /\ n e. CC ) -> ( M x. ( n + 1 ) ) = ( ( M x. n ) + ( 1 x. M ) ) ) |
44 |
17 35 43
|
syl2an |
|- ( ( M e. NN /\ n e. NN ) -> ( M x. ( n + 1 ) ) = ( ( M x. n ) + ( 1 x. M ) ) ) |
45 |
44
|
oveq2d |
|- ( ( M e. NN /\ n e. NN ) -> ( M gcd ( M x. ( n + 1 ) ) ) = ( M gcd ( ( M x. n ) + ( 1 x. M ) ) ) ) |
46 |
34 45
|
eqtr4d |
|- ( ( M e. NN /\ n e. NN ) -> ( M gcd ( M x. n ) ) = ( M gcd ( M x. ( n + 1 ) ) ) ) |
47 |
46
|
eqeq1d |
|- ( ( M e. NN /\ n e. NN ) -> ( ( M gcd ( M x. n ) ) = M <-> ( M gcd ( M x. ( n + 1 ) ) ) = M ) ) |
48 |
47
|
biimpd |
|- ( ( M e. NN /\ n e. NN ) -> ( ( M gcd ( M x. n ) ) = M -> ( M gcd ( M x. ( n + 1 ) ) ) = M ) ) |
49 |
48
|
expcom |
|- ( n e. NN -> ( M e. NN -> ( ( M gcd ( M x. n ) ) = M -> ( M gcd ( M x. ( n + 1 ) ) ) = M ) ) ) |
50 |
49
|
a2d |
|- ( n e. NN -> ( ( M e. NN -> ( M gcd ( M x. n ) ) = M ) -> ( M e. NN -> ( M gcd ( M x. ( n + 1 ) ) ) = M ) ) ) |
51 |
4 8 12 16 28 50
|
nnind |
|- ( N e. NN -> ( M e. NN -> ( M gcd ( M x. N ) ) = M ) ) |
52 |
51
|
impcom |
|- ( ( M e. NN /\ N e. NN ) -> ( M gcd ( M x. N ) ) = M ) |